Last updated: 2018-08-30
workflowr checks: (Click a bullet for more information) ✔ R Markdown file: up-to-date
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
✔ Environment: empty
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
✔ Seed:
set.seed(12345)
The command set.seed(12345)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
✔ Session information: recorded
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
✔ Repository version: a5f5276
wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: output/.DS_Store
Untracked files:
Untracked: analysis/ncbiRefSeq_sm.sort.mRNA.bed
Untracked: analysis/snake.config.notes.Rmd
Untracked: data/18486.genecov.txt
Untracked: data/APApeaksYL.total.inbrain.bed
Untracked: data/Totalpeaks_filtered_clean.bed
Untracked: data/YL-SP-18486-T-combined-genecov.txt
Untracked: data/YL-SP-18486-T_S9_R1_001-genecov.txt
Untracked: data/bedgraph_peaks/
Untracked: data/bin200.5.T.nuccov.bed
Untracked: data/bin200.Anuccov.bed
Untracked: data/bin200.nuccov.bed
Untracked: data/clean_peaks/
Untracked: data/comb_map_stats.csv
Untracked: data/comb_map_stats.xlsx
Untracked: data/combined_reads_mapped_three_prime_seq.csv
Untracked: data/gencov.test.csv
Untracked: data/gencov.test.txt
Untracked: data/gencov_zero.test.csv
Untracked: data/gencov_zero.test.txt
Untracked: data/gene_cov/
Untracked: data/joined
Untracked: data/leafcutter/
Untracked: data/merged_combined_YL-SP-threeprimeseq.bg
Untracked: data/nom_QTL/
Untracked: data/nuc6up/
Untracked: data/peakPerRefSeqGene/
Untracked: data/perm_QTL/
Untracked: data/reads_mapped_three_prime_seq.csv
Untracked: data/smash.cov.results.bed
Untracked: data/smash.cov.results.csv
Untracked: data/smash.cov.results.txt
Untracked: data/smash_testregion/
Untracked: data/ssFC200.cov.bed
Untracked: data/temp.file1
Untracked: data/temp.file2
Untracked: data/temp.gencov.test.txt
Untracked: data/temp.gencov_zero.test.txt
Untracked: output/picard/
Untracked: output/plots/
Untracked: output/qual.fig2.pdf
Unstaged changes:
Modified: analysis/28ind.peak.explore.Rmd
Modified: analysis/cleanupdtseq.internalpriming.Rmd
Modified: analysis/dataprocfigures.Rmd
Modified: analysis/dif.iso.usage.leafcutter.Rmd
Modified: analysis/explore.filters.Rmd
Modified: analysis/peak.cov.pipeline.Rmd
Modified: analysis/pheno.leaf.comb.Rmd
Modified: analysis/test.max2.Rmd
Modified: code/Snakefile
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | a5f5276 | Briana Mittleman | 2018-08-30 | initialize diff iso pipeline |
In my early analysis of the first 32 libraries I ran the leafcutter differential isoform tool. I am now going to rerun this with the peaks called from the 28 individuals. These peaks have been created with the Peak pipeline in https://brimittleman.github.io/threeprimeseq/peak.cov.pipeline.html. These are also the peaks used for the initial QTL analysis. https://brimittleman.github.io/threeprimeseq/apaQTLwLeafcutter.html. I can use the same phenotype and genotype files from this analysis.
To run the differential isoform analysis I need a file with the lines numbers and the fraction. This is similar to the sample.txt file from the QTL analysis.
The phenotype file is filtered_APApeaks_merged_allchrom_refseqGenes_pheno.txt. I can use the header of this to create the sample form. I will work in the directory: /project2/gilad/briana/threeprimeseq/data/diff_iso/
make_samplegroups.py
outfile=open("/project2/gilad/briana/threeprimeseq/data/diff_iso/sample_groups.txt", "w")
infile=open("/project2/gilad/briana/threeprimeseq/data/diff_iso/filtered_APApeaks_merged_allchrom_refseqGenes_pheno.txt", "r")
for ln, i in enumerate(infile):
if ln==0:
header=i.split()
lines=header[1:]
for l in lines:
if l[-1] == "T":
outfile.write("%s\tTotal\n"%(l))
else:
outfile.write("%s\tNuclear\n"%(l))
outfile.close()
I can now run the leafcutter_ds.R file.
run_leafcutter_ds.sh
#!/bin/bash
#SBATCH --job-name=diff_isoTN
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=diff_isoTN.out
#SBATCH --error=diff_isoTN.err
#SBATCH --partition=broadwl
#SBATCH --mem=12G
#SBATCH --mail-type=END
module load R
Rscript /project2/gilad/briana/threeprimeseq/data/diff_iso/leafcutter_ds.R /project2/gilad/briana/threeprimeseq/data/diff_iso/filtered_APApeaks_merged_allchrom_refseqGenes_pheno.txt /project2/gilad/briana/threeprimeseq/data/diff_iso/sample_groups.txt -o /project2/gilad/briana/threeprimeseq/data/diff_iso/TN_diff_isoform
Error in dimnames(x) <- dn : length of ‘dimnames’ [2] not equal to array extent Calls: differential_splicing -> get_intron_meta -> colnames<- Execution halted
Problem may be due to the phenotype file. It looks like the header does not need a PeakID column.
sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS Sierra 10.12.6
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
loaded via a namespace (and not attached):
[1] workflowr_1.1.1 Rcpp_0.12.18 digest_0.6.16
[4] rprojroot_1.3-2 R.methodsS3_1.7.1 backports_1.1.2
[7] git2r_0.23.0 magrittr_1.5 evaluate_0.11
[10] stringi_1.2.4 whisker_0.3-2 R.oo_1.22.0
[13] R.utils_2.7.0 rmarkdown_1.10 tools_3.5.1
[16] stringr_1.3.1 yaml_2.2.0 compiler_3.5.1
[19] htmltools_0.3.6 knitr_1.20
This reproducible R Markdown analysis was created with workflowr 1.1.1