Last updated: 2018-11-06
workflowr checks: (Click a bullet for more information)Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
set.seed(12345)
The command set.seed(12345)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: data/.DS_Store
Ignored: output/.DS_Store
Untracked files:
Untracked: KalistoAbundance18486.txt
Untracked: analysis/ncbiRefSeq_sm.sort.mRNA.bed
Untracked: analysis/snake.config.notes.Rmd
Untracked: analysis/verifyBAM.Rmd
Untracked: data/18486.genecov.txt
Untracked: data/APApeaksYL.total.inbrain.bed
Untracked: data/ChromHmmOverlap/
Untracked: data/GM12878.chromHMM.bed
Untracked: data/GM12878.chromHMM.txt
Untracked: data/NuclearApaQTLs.txt
Untracked: data/PeaksUsed/
Untracked: data/RNAkalisto/
Untracked: data/TotalApaQTLs.txt
Untracked: data/Totalpeaks_filtered_clean.bed
Untracked: data/YL-SP-18486-T-combined-genecov.txt
Untracked: data/YL-SP-18486-T_S9_R1_001-genecov.txt
Untracked: data/apaExamp/
Untracked: data/bedgraph_peaks/
Untracked: data/bin200.5.T.nuccov.bed
Untracked: data/bin200.Anuccov.bed
Untracked: data/bin200.nuccov.bed
Untracked: data/clean_peaks/
Untracked: data/comb_map_stats.csv
Untracked: data/comb_map_stats.xlsx
Untracked: data/comb_map_stats_39ind.csv
Untracked: data/combined_reads_mapped_three_prime_seq.csv
Untracked: data/diff_iso_trans/
Untracked: data/ensemble_to_genename.txt
Untracked: data/filtered_APApeaks_merged_allchrom_refseqTrans.closest2End.bed
Untracked: data/filtered_APApeaks_merged_allchrom_refseqTrans.closest2End.noties.bed
Untracked: data/first50lines_closest.txt
Untracked: data/gencov.test.csv
Untracked: data/gencov.test.txt
Untracked: data/gencov_zero.test.csv
Untracked: data/gencov_zero.test.txt
Untracked: data/gene_cov/
Untracked: data/joined
Untracked: data/leafcutter/
Untracked: data/merged_combined_YL-SP-threeprimeseq.bg
Untracked: data/mol_overlap/
Untracked: data/mol_pheno/
Untracked: data/nom_QTL/
Untracked: data/nom_QTL_opp/
Untracked: data/nom_QTL_trans/
Untracked: data/nuc6up/
Untracked: data/other_qtls/
Untracked: data/peakPerRefSeqGene/
Untracked: data/perm_QTL/
Untracked: data/perm_QTL_opp/
Untracked: data/perm_QTL_trans/
Untracked: data/reads_mapped_three_prime_seq.csv
Untracked: data/smash.cov.results.bed
Untracked: data/smash.cov.results.csv
Untracked: data/smash.cov.results.txt
Untracked: data/smash_testregion/
Untracked: data/ssFC200.cov.bed
Untracked: data/temp.file1
Untracked: data/temp.file2
Untracked: data/temp.gencov.test.txt
Untracked: data/temp.gencov_zero.test.txt
Untracked: output/picard/
Untracked: output/plots/
Untracked: output/qual.fig2.pdf
Unstaged changes:
Modified: analysis/28ind.peak.explore.Rmd
Modified: analysis/39indQC.Rmd
Modified: analysis/apaQTLoverlapGWAS.Rmd
Modified: analysis/characterizeNuclearApaQtls.Rmd
Modified: analysis/cleanupdtseq.internalpriming.Rmd
Modified: analysis/coloc_apaQTLs_protQTLs.Rmd
Modified: analysis/dif.iso.usage.leafcutter.Rmd
Modified: analysis/diff_iso_pipeline.Rmd
Modified: analysis/explore.filters.Rmd
Modified: analysis/overlapMolQTL.Rmd
Modified: analysis/overlap_qtls.Rmd
Modified: analysis/peakOverlap_oppstrand.Rmd
Modified: analysis/pheno.leaf.comb.Rmd
Modified: analysis/swarmPlots_QTLs.Rmd
Modified: analysis/test.max2.Rmd
Modified: code/Snakefile
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes. File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | b5f744f | Briana Mittleman | 2018-11-06 | initiate flash2mash |
I will use this analysis to implement the flash and mash packages developed by the stephens lab to better understand molecular QTL sharing and to see if adding APA to a model can help with power in protein QTLs.
Steps: 1. FLASH to see tissue patterns (https://willwerscheid.github.io/MASHvFLASH/MASHvFLASHnn.html and https://willwerscheid.github.io/MASHvFLASH/MASHvFLASHnn2.html)
2. Conditional analysis with residuals to see if I can call APA qtls on the residuals from an RNA~protein analysis 3. run MASH
Data stucture: I need to have a matrix with all of my QTL results. I want to get a snp-gene by phenotype matrix with the effect sizes and standard errors. First I will do this with the genes we have all data for (unless it is too small). To deal with the APA isoform problem I will use the peak with the most significant peak-snp pair. This should be ok because given the peaks are ratios they are all correlated with eachother.
library(tidyverse)
── Attaching packages ────────────────────────────────────────────────────────────────────────────── tidyverse 1.2.1 ──
✔ ggplot2 3.0.0 ✔ purrr 0.2.5
✔ tibble 1.4.2 ✔ dplyr 0.7.6
✔ tidyr 0.8.1 ✔ stringr 1.3.1
✔ readr 1.1.1 ✔ forcats 0.3.0
── Conflicts ───────────────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag() masks stats::lag()
library(workflowr)
This is workflowr version 1.1.1
Run ?workflowr for help getting started
First I can use the permuted results to look at the genes that are tested in all of the phenotypes.
read_permfile=function(file, mol){
perm_names=c("pid" ,"nvar","shape1" ,"shape2", "dummy","sid" ,"dist","npval", "slope" , "ppval" ,"bpval")
geneNames=read.table("../data/ensemble_to_genename.txt", sep="\t", header=T,stringsAsFactors = F)
res=read.table(file, col.names = perm_names, stringsAsFactors = F)
if (mol == "protein"){
res_f= res %>% rename("Gene.stable.ID"=pid)
res_final= res_f %>% inner_join(geneNames, by="Gene.stable.ID") %>% select(c("Gene.name"))
}
else{
res_final =res %>% separate(pid, into=c("Gene.stable.ID", "ver"), sep ="[.]") %>% inner_join(geneNames, by="Gene.stable.ID") %>% select(c("Gene.name"))
}
return(res_final)
}
prot_res=read_permfile("../data/other_qtls/fastqtl_qqnorm_prot.fixed.perm.out", "protein")
rna_res=read_permfile("../data/other_qtls/fastqtl_qqnorm_RNAseq_phase2.fixed.perm.out", "RNA")
rnaG_res=read_permfile("../data/other_qtls/fastqtl_qqnorm_RNAseqGeuvadis.fixed.perm.out", "RNAG")
su30_res=read_permfile("../data/other_qtls/fastqtl_qqnorm_4su30.fixed.perm.out", "su30")
su60_res=read_permfile("../data/other_qtls/fastqtl_qqnorm_4su60.fixed.perm.out", "su60")
ribo_res=read_permfile("../data/other_qtls/fastqtl_qqnorm_ribo_phase2.fixed.perm.out", "ribo")
Now I need to look at the apa file genes.
NuclearAPA=read.table("../data/perm_QTL_trans/filtered_APApeaks_merged_allchrom_refseqGenes_pheno_Nuclear_transcript_permResBH.txt", stringsAsFactors = F, header=T) %>% separate(pid, sep = ":", into=c("chr", "start", "end", "id")) %>% separate(id, sep = "_", into=c("gene", "strand", "peak")) %>% rename("Gene.name"=gene) %>% select(Gene.name)%>% distinct()
totalAPA=read.table("../data/perm_QTL_trans/filtered_APApeaks_merged_allchrom_refseqGenes_pheno_Total_transcript_permResBH.txt", stringsAsFactors = F, header=T) %>% separate(pid, sep = ":", into=c("chr", "start", "end", "id")) %>% separate(id, sep = "_", into=c("gene", "strand", "peak")) %>% rename("Gene.name"=gene) %>% select(Gene.name) %>% distinct()
Look hoqw many genes are in all sets:
allgenes= NuclearAPA %>% inner_join(totalAPA,by="Gene.name") %>% inner_join(totalAPA,by="Gene.name") %>% inner_join(su30_res,by="Gene.name") %>% inner_join(su60_res,by="Gene.name") %>% inner_join(rna_res,by="Gene.name") %>% inner_join(rnaG_res,by="Gene.name")%>% inner_join(ribo_res,by="Gene.name")%>% inner_join(prot_res,by="Gene.name")
print(nrow(allgenes))
[1] 904
allgenes_minusprot= NuclearAPA %>% inner_join(totalAPA,by="Gene.name") %>% inner_join(totalAPA,by="Gene.name") %>% inner_join(su30_res,by="Gene.name") %>% inner_join(su60_res,by="Gene.name") %>% inner_join(rna_res,by="Gene.name") %>% inner_join(rnaG_res,by="Gene.name")%>% inner_join(ribo_res,by="Gene.name")
print(nrow(allgenes_minusprot))
[1] 2195
allgenes_minusribo= NuclearAPA %>% inner_join(totalAPA,by="Gene.name") %>% inner_join(totalAPA,by="Gene.name") %>% inner_join(su30_res,by="Gene.name") %>% inner_join(su60_res,by="Gene.name") %>% inner_join(rna_res,by="Gene.name") %>% inner_join(rnaG_res,by="Gene.name")%>% inner_join(prot_res,by="Gene.name")
print(nrow(allgenes_minusribo))
[1] 904
genes_ApaRnaProt= NuclearAPA %>% inner_join(totalAPA,by="Gene.name") %>%inner_join(rna_res,by="Gene.name") %>%inner_join(prot_res,by="Gene.name")
print(nrow(genes_ApaRnaProt))
[1] 904
genes_RNAProt= rna_res%>%inner_join(prot_res,by="Gene.name")
print(nrow(genes_RNAProt))
[1] 4131
Only have 904 genes that are tested in both APA and protein data.
sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS Sierra 10.12.6
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] workflowr_1.1.1 forcats_0.3.0 stringr_1.3.1 dplyr_0.7.6
[5] purrr_0.2.5 readr_1.1.1 tidyr_0.8.1 tibble_1.4.2
[9] ggplot2_3.0.0 tidyverse_1.2.1
loaded via a namespace (and not attached):
[1] Rcpp_0.12.19 cellranger_1.1.0 plyr_1.8.4
[4] compiler_3.5.1 pillar_1.3.0 git2r_0.23.0
[7] bindr_0.1.1 R.methodsS3_1.7.1 R.utils_2.7.0
[10] tools_3.5.1 digest_0.6.17 lubridate_1.7.4
[13] jsonlite_1.5 evaluate_0.11 nlme_3.1-137
[16] gtable_0.2.0 lattice_0.20-35 pkgconfig_2.0.2
[19] rlang_0.2.2 cli_1.0.1 rstudioapi_0.8
[22] yaml_2.2.0 haven_1.1.2 bindrcpp_0.2.2
[25] withr_2.1.2 xml2_1.2.0 httr_1.3.1
[28] knitr_1.20 hms_0.4.2 rprojroot_1.3-2
[31] grid_3.5.1 tidyselect_0.2.4 glue_1.3.0
[34] R6_2.3.0 readxl_1.1.0 rmarkdown_1.10
[37] modelr_0.1.2 magrittr_1.5 whisker_0.3-2
[40] backports_1.1.2 scales_1.0.0 htmltools_0.3.6
[43] rvest_0.3.2 assertthat_0.2.0 colorspace_1.3-2
[46] stringi_1.2.4 lazyeval_0.2.1 munsell_0.5.0
[49] broom_0.5.0 crayon_1.3.4 R.oo_1.22.0
This reproducible R Markdown analysis was created with workflowr 1.1.1