Last updated: 2018-07-26
workflowr checks: (Click a bullet for more information)Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
set.seed(12345)
The command set.seed(12345)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: output/.DS_Store
Untracked files:
Untracked: data/18486.genecov.txt
Untracked: data/APApeaksYL.total.inbrain.bed
Untracked: data/YL-SP-18486-T_S9_R1_001-genecov.txt
Untracked: data/bedgraph_peaks/
Untracked: data/bin200.5.T.nuccov.bed
Untracked: data/bin200.Anuccov.bed
Untracked: data/bin200.nuccov.bed
Untracked: data/clean_peaks/
Untracked: data/gene_cov/
Untracked: data/leafcutter/
Untracked: data/nuc6up/
Untracked: data/reads_mapped_three_prime_seq.csv
Untracked: data/smash.cov.results.bed
Untracked: data/smash.cov.results.csv
Untracked: data/smash.cov.results.txt
Untracked: data/smash_testregion/
Untracked: data/ssFC200.cov.bed
Untracked: output/picard/
Untracked: output/plots/
Untracked: output/qual.fig2.pdf
Unstaged changes:
Modified: analysis/dif.iso.usage.leafcutter.Rmd
Modified: analysis/explore.filters.Rmd
Modified: analysis/test.max2.Rmd
Modified: code/Snakefile
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes. File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 31118c6 | Briana Mittleman | 2018-07-26 | add length and coverage analysis |
html | f3eaa0b | Briana Mittleman | 2018-07-25 | Build site. |
Rmd | be5fac4 | Briana Mittleman | 2018-07-25 | explore cleanup results |
html | 3a5a8fe | Briana Mittleman | 2018-07-25 | Build site. |
Rmd | d8394a3 | Briana Mittleman | 2018-07-25 | start clean up code analysis |
Install new packages:
source("https://bioconductor.org/biocLite.R")
biocLite("BSgenome.Hsapiens.UCSC.hg19")
Load Packages:
library(workflowr)
This is workflowr version 1.1.1
Run ?workflowr for help getting started
library(cleanUpdTSeq)
Loading required package: BiocGenerics
Loading required package: parallel
Attaching package: 'BiocGenerics'
The following objects are masked from 'package:parallel':
clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
clusterExport, clusterMap, parApply, parCapply, parLapply,
parLapplyLB, parRapply, parSapply, parSapplyLB
The following objects are masked from 'package:stats':
IQR, mad, sd, var, xtabs
The following objects are masked from 'package:base':
anyDuplicated, append, as.data.frame, basename, cbind,
colMeans, colnames, colSums, dirname, do.call, duplicated,
eval, evalq, Filter, Find, get, grep, grepl, intersect,
is.unsorted, lapply, lengths, Map, mapply, match, mget, order,
paste, pmax, pmax.int, pmin, pmin.int, Position, rank, rbind,
Reduce, rowMeans, rownames, rowSums, sapply, setdiff, sort,
table, tapply, union, unique, unsplit, which, which.max,
which.min
Loading required package: BSgenome
Loading required package: S4Vectors
Loading required package: stats4
Attaching package: 'S4Vectors'
The following object is masked from 'package:base':
expand.grid
Loading required package: IRanges
Loading required package: GenomeInfoDb
Loading required package: GenomicRanges
Loading required package: Biostrings
Loading required package: XVector
Attaching package: 'Biostrings'
The following object is masked from 'package:base':
strsplit
Loading required package: rtracklayer
Loading required package: BSgenome.Drerio.UCSC.danRer7
Loading required package: seqinr
Attaching package: 'seqinr'
The following object is masked from 'package:Biostrings':
translate
Loading required package: e1071
library(GenomicRanges)
library(BSgenome.Hsapiens.UCSC.hg19)
library(ggseqlogo)
library(ggplot2)
library(dplyr)
Attaching package: 'dplyr'
The following object is masked from 'package:seqinr':
count
The following objects are masked from 'package:Biostrings':
collapse, intersect, setdiff, setequal, union
The following object is masked from 'package:XVector':
slice
The following objects are masked from 'package:GenomicRanges':
intersect, setdiff, union
The following object is masked from 'package:GenomeInfoDb':
intersect
The following objects are masked from 'package:IRanges':
collapse, desc, intersect, setdiff, slice, union
The following objects are masked from 'package:S4Vectors':
first, intersect, rename, setdiff, setequal, union
The following objects are masked from 'package:BiocGenerics':
combine, intersect, setdiff, union
The following objects are masked from 'package:stats':
filter, lag
The following objects are masked from 'package:base':
intersect, setdiff, setequal, union
library(gridExtra)
Attaching package: 'gridExtra'
The following object is masked from 'package:dplyr':
combine
The following object is masked from 'package:BiocGenerics':
combine
library(tidyr)
Attaching package: 'tidyr'
The following object is masked from 'package:S4Vectors':
expand
I am also going to install cleanUpdTSeq on my midway account because I will want to write scripts using this package that can take in any bedfile and will write out the file with the classification results. I can also have the cutoff option be a parameter that will change.
The test set should have chr, start, end, name, score, strand.
#!/bin/rscripts
# usage: ./cleanupdtseq.R in_bedfile, outfile, cuttoff
#this script takes a putative peak file, and output file name and a cuttoff for classification and outputs the file with all of the seqs classified.
#use optparse for management of input arguments I want to be able to imput the 6up nuc file and write out a filter file
#script needs to run outside of conda env. should module load R in bash script when I submit it
library(optparse)
library(dplyr)
library(tidyr)
library(ggplot2)
library(cleanUpdTSeq)
library(GenomicRanges)
library(BSgenome.Hsapiens.UCSC.hg19)
option_list = list(
make_option(c("-f", "--file"), action="store", default=NA, type='character',
help="input file"),
make_option(c("-o", "--output"), action="store", default=NA, type='character',
help="output file"),
make_option(c("-c", "--cutoff"), action="store", default=NA, type='double',
help="assignment cuttoff")
)
opt_parser <- OptionParser(option_list=option_list)
opt <- parse_args(opt_parser)
#interrupt execution if no file is supplied
if (is.null(opt$file)){
print_help(opt_parser)
stop("Need input file", call.=FALSE)
}
#imput file for test data
testSet <- read.table(file = opt$file, sep="\t", header=TRUE)
peaks <- BED2GRangesSeq(testSet, withSeq=FALSE)
#build vector with human genome
testSet.NaiveBayes <- buildFeatureVector(peaks, BSgenomeName=Hsapiens,
upstream=40, downstream=30,
wordSize=6, alphabet=c("ACGT"),
sampleType="unknown",
replaceNAdistance=30,
method="NaiveBayes",
ZeroBasedIndex=1, fetchSeq=TRUE)
#classfy sites with built in classsifer
data(classifier)
testResults <- predictTestSet(testSet.NaiveBayes=testSet.NaiveBayes,
classifier=classifier,
outputFile=NULL,
assignmentCutoff=opt$cutoff)
#write results
write.table(testResults, file=opt$output, quote = F, row.names = F, col.names = T)
I will need to module load R in the bash script that writes this.
#!/bin/bash
#SBATCH --job-name=clean_filteredpeakstotal
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=clean_filteredpeakstotal.out
#SBATCH --error=clean_filteredpeakstotal.err
#SBATCH --partition=broadwl
#SBATCH --mem=40G
#SBATCH --mail-type=END
module load R
Rscript cleanupdtseq.R -f /project2/gilad/briana/threeprimeseq/data/clean.peaks/APAfiltered_named.bed -o /project2/gilad/briana/threeprimeseq/data/clean.peaks/clean_APAfilteredTotal.txt -c .5
#add names to bed file with peaks
#awk '{print $1 "\t" $2 "\t" $3 "\t" $1 ":" $2 ":" $3 "\t" $4 "\t" $5 "\t" $6}' APAfiltered.bed > APAfiltered_named.bed
seq 1 199880 > peak.num.txt
paste APAfiltered.bed peak.num.txt | column -s $'\t' -t > temp
awk '{print $1 "\t" $2 "\t" $3 "\t" $7 "\t" $4 "\t" $5 "\t" $6}' temp > APAfiltered_named.bed
This cuttoff results in a move from 199880 to 125825 called sites.
peaks=read.table("../data/clean_peaks/clean_APAfilteredTotal.txt", header = T, stringsAsFactors = F)
Plot the density of the probabilities. I expect a bimodal distribution.
ggplot(peaks, aes(probTrue)) + geom_density(fill="blue") + labs(title="Density of Probability Peak is a True APA peak", x="Probability True PAS")
Version | Author | Date |
---|---|---|
f3eaa0b | Briana Mittleman | 2018-07-25 |
Next I want to make logo plots for the upstream sequences seperated by class. I expect to see an overrepresentation of A/T in the upstream of the false samples.
true_peaks=peaks %>% filter(pred.class==1)
false_peaks=peaks %>% filter(pred.class==0)
I can extract just the upstream seq for each class.
true_peaks_up=peaks %>% filter(pred.class==1) %>% select(UpstreamSeq)
false_peaks_up= peaks %>% filter(pred.class==0) %>% select(UpstreamSeq)
trueplot_up=ggseqlogo(true_peaks_up,seq_type='dna', method = 'prob') + labs(x="Base number", title="Upstream Seq: True PAS")
falseplot_up=ggseqlogo(false_peaks_up,seq_type='dna', method = 'prob') + labs(x="Base number", title="Upstream Seq: False PAS")
gridExtra::grid.arrange(trueplot_up,falseplot_up)
Version | Author | Date |
---|---|---|
f3eaa0b | Briana Mittleman | 2018-07-25 |
I can do the same thing for the downstream seq.
true_peaks_down=peaks %>% filter(pred.class==1) %>% select(DownstreamSeq)
false_peaks_down= peaks %>% filter(pred.class==0) %>% select(DownstreamSeq)
trueplot_down=ggseqlogo(true_peaks_down,seq_type='dna', method = 'prob') + labs(x="Base number", title="Downstream Seq: True PAS")
falseplot_down=ggseqlogo(false_peaks_down,seq_type='dna', method = 'prob') + labs(x="Base number", title="Downstream Seq: False PAS")
gridExtra::grid.arrange(trueplot_down,falseplot_down)
Version | Author | Date |
---|---|---|
f3eaa0b | Briana Mittleman | 2018-07-25 |
I can join all of the information from the original bed with the results using a join by the name.
names=c("chr", "start", "end", "PeakName", "Cov", "Strand", "score")
YL_peaks=read.table("../data/clean_peaks/APAfiltered_named.bed", col.names = names)
full_peaks= inner_join(YL_peaks, peaks, by="PeakName") %>% mutate(length=end-start)
full_peaks$pred.class= as.factor(full_peaks$pred.class)
ggplot(full_peaks, aes(length, group=pred.class, fill=pred.class)) + geom_density(alpha=.4) + scale_x_log10() + labs(title="Peak lengths do not differ by predicted class", x="Length of called Peak") + scale_fill_manual(values=c("red", "blue"), name="Predicted Class", labels=c("False Positive", "True PAS"))
ggplot(full_peaks, aes(x=Cov, group=pred.class, fill=pred.class)) + geom_density(alpha=.4) + scale_x_log10() + labs(title="Peak coverage by predicted class", x=" Peak coverage") + scale_fill_manual(values=c("red", "blue"), name="Predicted Class", labels=c("False Positive", "True PAS"))
```
sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS Sierra 10.12.6
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats4 parallel stats graphics grDevices utils datasets
[8] methods base
other attached packages:
[1] bindrcpp_0.2.2 tidyr_0.8.1
[3] gridExtra_2.3 dplyr_0.7.6
[5] ggplot2_3.0.0 ggseqlogo_0.1
[7] BSgenome.Hsapiens.UCSC.hg19_1.4.0 cleanUpdTSeq_1.18.0
[9] e1071_1.6-8 seqinr_3.4-5
[11] BSgenome.Drerio.UCSC.danRer7_1.4.0 BSgenome_1.48.0
[13] rtracklayer_1.40.3 Biostrings_2.48.0
[15] XVector_0.20.0 GenomicRanges_1.32.6
[17] GenomeInfoDb_1.16.0 IRanges_2.14.10
[19] S4Vectors_0.18.3 BiocGenerics_0.26.0
[21] workflowr_1.1.1
loaded via a namespace (and not attached):
[1] Rcpp_0.12.18 lattice_0.20-35
[3] Rsamtools_1.32.2 class_7.3-14
[5] assertthat_0.2.0 rprojroot_1.3-2
[7] digest_0.6.15 R6_2.2.2
[9] plyr_1.8.4 backports_1.1.2
[11] evaluate_0.11 pillar_1.3.0
[13] zlibbioc_1.26.0 rlang_0.2.1
[15] lazyeval_0.2.1 rstudioapi_0.7
[17] whisker_0.3-2 R.utils_2.6.0
[19] R.oo_1.22.0 Matrix_1.2-14
[21] rmarkdown_1.10 labeling_0.3
[23] BiocParallel_1.14.2 stringr_1.3.1
[25] RCurl_1.95-4.11 munsell_0.5.0
[27] DelayedArray_0.6.2 compiler_3.5.1
[29] pkgconfig_2.0.1 htmltools_0.3.6
[31] tidyselect_0.2.4 SummarizedExperiment_1.10.1
[33] tibble_1.4.2 GenomeInfoDbData_1.1.0
[35] matrixStats_0.54.0 XML_3.98-1.12
[37] withr_2.1.2 crayon_1.3.4
[39] GenomicAlignments_1.16.0 MASS_7.3-50
[41] bitops_1.0-6 R.methodsS3_1.7.1
[43] grid_3.5.1 gtable_0.2.0
[45] git2r_0.23.0 magrittr_1.5
[47] scales_0.5.0 stringi_1.2.4
[49] tools_3.5.1 ade4_1.7-11
[51] Biobase_2.40.0 glue_1.3.0
[53] purrr_0.2.5 yaml_2.1.19
[55] colorspace_1.3-2 knitr_1.20
[57] bindr_0.1.1
This reproducible R Markdown analysis was created with workflowr 1.1.1