Last updated: 2019-02-15
Checks: 6 0
Knit directory: threeprimeseq/analysis/
This reproducible R Markdown analysis was created with workflowr (version 1.2.0). The Report tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(12345)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: data/.DS_Store
Ignored: data/perm_QTL_trans_noMP_5percov/
Ignored: output/.DS_Store
Untracked files:
Untracked: KalistoAbundance18486.txt
Untracked: analysis/4suDataIGV.Rmd
Untracked: analysis/DirectionapaQTL.Rmd
Untracked: analysis/EvaleQTLs.Rmd
Untracked: analysis/YL_QTL_test.Rmd
Untracked: analysis/ncbiRefSeq_sm.sort.mRNA.bed
Untracked: analysis/snake.config.notes.Rmd
Untracked: analysis/verifyBAM.Rmd
Untracked: analysis/verifybam_dubs.Rmd
Untracked: code/PeaksToCoverPerReads.py
Untracked: code/strober_pc_pve_heatmap_func.R
Untracked: data/18486.genecov.txt
Untracked: data/APApeaksYL.total.inbrain.bed
Untracked: data/ApaQTLs/
Untracked: data/ChromHmmOverlap/
Untracked: data/DistTXN2Peak_genelocAnno/
Untracked: data/GM12878.chromHMM.bed
Untracked: data/GM12878.chromHMM.txt
Untracked: data/LianoglouLCL/
Untracked: data/LocusZoom/
Untracked: data/NuclearApaQTLs.txt
Untracked: data/PeakCounts/
Untracked: data/PeakCounts_noMP_5perc/
Untracked: data/PeakCounts_noMP_genelocanno/
Untracked: data/PeakUsage/
Untracked: data/PeakUsage_noMP/
Untracked: data/PeakUsage_noMP_GeneLocAnno/
Untracked: data/PeaksUsed/
Untracked: data/PeaksUsed_noMP_5percCov/
Untracked: data/RNAkalisto/
Untracked: data/RefSeq_annotations/
Untracked: data/TotalApaQTLs.txt
Untracked: data/Totalpeaks_filtered_clean.bed
Untracked: data/UnderstandPeaksQC/
Untracked: data/WASP_STAT/
Untracked: data/YL-SP-18486-T-combined-genecov.txt
Untracked: data/YL-SP-18486-T_S9_R1_001-genecov.txt
Untracked: data/YL_QTL_test/
Untracked: data/apaExamp/
Untracked: data/apaQTL_examp_noMP/
Untracked: data/bedgraph_peaks/
Untracked: data/bin200.5.T.nuccov.bed
Untracked: data/bin200.Anuccov.bed
Untracked: data/bin200.nuccov.bed
Untracked: data/clean_peaks/
Untracked: data/comb_map_stats.csv
Untracked: data/comb_map_stats.xlsx
Untracked: data/comb_map_stats_39ind.csv
Untracked: data/combined_reads_mapped_three_prime_seq.csv
Untracked: data/diff_iso_GeneLocAnno/
Untracked: data/diff_iso_proc/
Untracked: data/diff_iso_trans/
Untracked: data/ensemble_to_genename.txt
Untracked: data/example_gene_peakQuant/
Untracked: data/explainProtVar/
Untracked: data/filtPeakOppstrand_cov_noMP_GeneLocAnno_5perc/
Untracked: data/filtered_APApeaks_merged_allchrom_refseqTrans.closest2End.bed
Untracked: data/filtered_APApeaks_merged_allchrom_refseqTrans.closest2End.noties.bed
Untracked: data/first50lines_closest.txt
Untracked: data/gencov.test.csv
Untracked: data/gencov.test.txt
Untracked: data/gencov_zero.test.csv
Untracked: data/gencov_zero.test.txt
Untracked: data/gene_cov/
Untracked: data/joined
Untracked: data/leafcutter/
Untracked: data/merged_combined_YL-SP-threeprimeseq.bg
Untracked: data/molPheno_noMP/
Untracked: data/mol_overlap/
Untracked: data/mol_pheno/
Untracked: data/nom_QTL/
Untracked: data/nom_QTL_opp/
Untracked: data/nom_QTL_trans/
Untracked: data/nuc6up/
Untracked: data/nuc_10up/
Untracked: data/other_qtls/
Untracked: data/pQTL_otherphen/
Untracked: data/peakPerRefSeqGene/
Untracked: data/perm_QTL/
Untracked: data/perm_QTL_GeneLocAnno_noMP_5percov/
Untracked: data/perm_QTL_GeneLocAnno_noMP_5percov_3UTR/
Untracked: data/perm_QTL_opp/
Untracked: data/perm_QTL_trans/
Untracked: data/perm_QTL_trans_filt/
Untracked: data/protAndAPAAndExplmRes.Rda
Untracked: data/protAndAPAlmRes.Rda
Untracked: data/protAndExpressionlmRes.Rda
Untracked: data/reads_mapped_three_prime_seq.csv
Untracked: data/smash.cov.results.bed
Untracked: data/smash.cov.results.csv
Untracked: data/smash.cov.results.txt
Untracked: data/smash_testregion/
Untracked: data/ssFC200.cov.bed
Untracked: data/temp.file1
Untracked: data/temp.file2
Untracked: data/temp.gencov.test.txt
Untracked: data/temp.gencov_zero.test.txt
Untracked: data/threePrimeSeqMetaData.csv
Untracked: data/threePrimeSeqMetaData55Ind.txt
Untracked: data/threePrimeSeqMetaData55Ind.xlsx
Untracked: data/threePrimeSeqMetaData55Ind_noDup.txt
Untracked: data/threePrimeSeqMetaData55Ind_noDup.xlsx
Untracked: data/threePrimeSeqMetaData55Ind_noDup_WASPMAP.txt
Untracked: data/threePrimeSeqMetaData55Ind_noDup_WASPMAP.xlsx
Untracked: output/picard/
Untracked: output/plots/
Untracked: output/qual.fig2.pdf
Unstaged changes:
Modified: analysis/28ind.peak.explore.Rmd
Modified: analysis/CompareLianoglouData.Rmd
Modified: analysis/NewPeakPostMP.Rmd
Modified: analysis/apaQTLoverlapGWAS.Rmd
Modified: analysis/cleanupdtseq.internalpriming.Rmd
Modified: analysis/coloc_apaQTLs_protQTLs.Rmd
Modified: analysis/dif.iso.usage.leafcutter.Rmd
Modified: analysis/diff_iso_pipeline.Rmd
Modified: analysis/explainpQTLs.Rmd
Modified: analysis/explore.filters.Rmd
Modified: analysis/flash2mash.Rmd
Modified: analysis/mispriming_approach.Rmd
Modified: analysis/overlapMolQTL.Rmd
Modified: analysis/overlapMolQTL.opposite.Rmd
Modified: analysis/overlap_qtls.Rmd
Modified: analysis/peakOverlap_oppstrand.Rmd
Modified: analysis/peakQCPPlots.Rmd
Modified: analysis/pheno.leaf.comb.Rmd
Modified: analysis/pipeline_55Ind.Rmd
Modified: analysis/swarmPlots_QTLs.Rmd
Modified: analysis/test.max2.Rmd
Modified: analysis/test.smash.Rmd
Modified: analysis/understandPeaks.Rmd
Modified: code/Snakefile
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view them.
File | Version | Author | Date | Message |
---|---|---|---|---|
html | 51fe78b | Briana Mittleman | 2018-10-08 | Build site. |
Rmd | 0c2fffb | Briana Mittleman | 2018-10-08 | add p1 to plots and create histograms |
html | 7369f8e | Briana Mittleman | 2018-10-02 | Build site. |
Rmd | f66679b | Briana Mittleman | 2018-10-02 | overlap plots at peak level |
In this analysis I want to use the resuls from the total and nuclear APA qtl calling. I will ask if conditioning on a nuclear QTL increases the signal in the total QTL and vice versa. I will start with the significant snp-peak pairs from the permuted files. I will then overlap with the nominal pvalues from the other fraction. I will do this similar to how I did in the overlaMolQTL analysis. However in this analysis I do not have the multiple peaks per gene problem that I have when I overlap the pvalues. I can map the same peak to snp pair.
Due to file size I will do this only with the permuted files.
library(tidyverse)
── Attaching packages ───────────────────────────────────────────────────────────── tidyverse 1.2.1 ──
✔ ggplot2 3.0.0 ✔ purrr 0.2.5
✔ tibble 1.4.2 ✔ dplyr 0.7.6
✔ tidyr 0.8.1 ✔ stringr 1.4.0
✔ readr 1.1.1 ✔ forcats 0.3.0
Warning: package 'stringr' was built under R version 3.5.2
── Conflicts ──────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag() masks stats::lag()
library(reshape2)
Attaching package: 'reshape2'
The following object is masked from 'package:tidyr':
smiths
library(workflowr)
This is workflowr version 1.2.0
Run ?workflowr for help getting started
library(qvalue)
Permuted
permTot=read.table("../data/perm_QTL_trans/filtered_APApeaks_merged_allchrom_refseqGenes_pheno_Total_transcript_permResBH.txt",header=T ,stringsAsFactors = F)
permNuc=read.table("../data/perm_QTL_trans/filtered_APApeaks_merged_allchrom_refseqGenes_pheno_Nuclear_transcript_permResBH.txt",header=T, stringsAsFactors = F)
Nominal
nomnames=c("pid", "sid", "dist", "npval", "slope")
#nomTot=read_table("../data/nom_QTL_trans/filtered_APApeaks_merged_allchrom_refseqGenes_pheno_Total_NomRes.txt", col_names=nomnames, col_types = c(col_character(), col_character(), col_double(), col_double(), col_double()))
#nomNuc=read_table("../data/nom_QTL_trans/filtered_APApeaks_merged_allchrom_refseqGenes_pheno_Nuclear_NomRes.txt", col_names=nomnames, col_types = c(col_character(), col_character(), col_double(), col_double(), col_double()))
overlapQTLplot_totalQTL=function(cut, plotfile){
#helper functions
sigsnp=function(cutoff){
permTot$bh=p.adjust(permTot$bpval, method="fdr")
file_sig=permTot %>% filter(-log10(bh)> cutoff) %>% select(sid)
print(paste("Sig snps=", nrow(file_sig), sep=" "))
return(file_sig)
}
randomsnps=function(SigSnpList){
nsnp=nrow(SigSnpList)
randomSnpDF= permTot %>% sample_n(nsnp) %>% arrange(sid) %>% select(sid)
return(randomSnpDF)
}
top_Nuclear=function(snp_list){
filt_nuc=permNuc %>% semi_join(snp_list, by="sid") %>% group_by(sid) %>% add_tally() %>% ungroup() %>% mutate(corrPval=bpval)
filt_nuc_top= filt_nuc %>% group_by(sid) %>% top_n(-1, corrPval)
print(paste("Nuclear overlap=", nrow(filt_nuc_top), sep=" "))
return(filt_nuc_top)
}
makeQQ=function(test, baseline){
plot=qqplot(-log10(runif(nrow(baseline))), -log10(baseline$corrPval), ylab="Observed", xlab="Expected", main="Significant Total QTLs- nuclear Pval")
points(sort(-log10(runif(nrow(test)))), sort(-log10(test$corrPval)), col= alpha("Red"))
abline(0,1)
return(plot)
}
TL=sigsnp(cut)
BL=randomsnps(TL)
#top snps test and base total
topN_T=top_Nuclear(TL)
topN_B=top_Nuclear(BL)
#plot Total
png(plotfile)
totalPlot=makeQQ(topN_T,topN_B)
dev.off()
}
overlapQTLplot_totalQTL(1, "../output/plots/TotalQTLinNuclear.png")
[1] "Sig snps= 118"
[1] "Nuclear overlap= 31"
[1] "Nuclear overlap= 9"
quartz_off_screen
2
overlapQTLplot_totalQTL=function(cut, plotfile){
#helper functions
sigsnp=function(cutoff){
permNuc$bh=p.adjust(permNuc$bpval, method="fdr")
file_sig=permNuc %>% filter(-log10(bh)> cutoff) %>% select(sid)
print(paste("Sig snps=", nrow(file_sig), sep=" "))
return(file_sig)
}
randomsnps=function(SigSnpList){
nsnp=nrow(SigSnpList)
randomSnpDF= permNuc %>% sample_n(nsnp) %>% arrange(sid) %>% select(sid)
return(randomSnpDF)
}
top_Total=function(snp_list){
filt_tot=permTot %>% semi_join(snp_list, by="sid") %>% group_by(sid) %>% add_tally() %>% ungroup() %>% mutate(corrPval=bpval)
filt_tot_top= filt_tot %>% group_by(sid) %>% top_n(-1, corrPval)
print(paste("Total overlap=", nrow(filt_tot_top), sep=" "))
return(filt_tot_top)
}
makeQQ=function(test, baseline){
plot=qqplot(-log10(runif(nrow(baseline))), -log10(baseline$corrPval), ylab="Observed", xlab="Expected", main="Significant Nuclear QTLs- Total Pval")
points(sort(-log10(runif(nrow(test)))), sort(-log10(test$corrPval)), col= alpha("Red"))
abline(0,1)
return(plot)
}
TL=sigsnp(cut)
BL=randomsnps(TL)
#top snps test and base total
topN_T=top_Total(TL)
topN_B=top_Total(BL)
#plot Total
png(plotfile)
totalPlot=makeQQ(topN_T,topN_B)
dev.off()
}
overlapQTLplot_totalQTL(1, "../output/plots/NuclearQTLinTotal.png")
[1] "Sig snps= 880"
[1] "Total overlap= 85"
[1] "Total overlap= 48"
quartz_off_screen
2
I should change this to focus on peak. I can say give me the genes with significant QTLs in total or nuclear then look at the pvalues for those peaks in the other file. As I did before, I am going to work on all of the functions seperatly then put them together.
Get the peaks with significant QTLs, and the same number of random peaks.
sigpeak=function(cutoff){
permNuc$bh=p.adjust(permNuc$bpval, method="fdr")
file_sig=permNuc %>% filter(-log10(bh)> cutoff) %>%separate(pid, sep = ":", into=c("chr", "start", "end", "id")) %>% separate(id, sep = "_", into=c("gene", "strand", "peak")) %>% select(peak)
print(paste("Sig peaks=", nrow(file_sig), sep=" "))
return(file_sig)
}
x=sigpeak(1)
randompeak=function(SigSnpList){
nsnp=nrow(SigSnpList)
randomPeakDF= permNuc %>% sample_n(nsnp) %>% separate(pid, sep = ":", into=c("chr", "start", "end", "id")) %>% separate(id, sep = "_", into=c("gene", "strand", "peak")) %>% select(peak)
return(randomPeakDF)
}
y=randompeak(x)
I can now get the top pvalue for each of these using the total permuted pval.
Peak_overlap=function(snp_list){
filt_tot=permTot %>% separate(pid, sep = ":", into=c("chr", "start", "end", "id")) %>% separate(id, sep = "_", into=c("gene", "strand", "peak")) %>% semi_join(snp_list, by="peak")
print(paste("Total overlap=", nrow(filt_tot), sep=" "))
return(filt_tot)
}
#run on real sig peaks and random peaks
Test=Peak_overlap(x)
base=Peak_overlap(y)
Plot:
makeQQ_peak=function(test, baseline){
plot=qqplot(-log10(runif(nrow(test))), -log10(test$bpval), ylab="Observed", xlab="Expected", main="Peaks with Significant QTLs in Nuc \n pvalues in Tot")
points(sort(-log10(runif(nrow(baseline)))), sort(-log10(baseline$bpval)), col=alpha("Red"))
abline(0,1)
return(plot)
}
plot=makeQQ_peak(Test,base)
SigNucPeakOverlapTot=function(cutoff, plotfile){
sigpeak=function(cutoff){
permNuc$bh=p.adjust(permNuc$bpval, method="fdr")
file_sig=permNuc %>% filter(-log10(bh)> cutoff) %>%separate(pid, sep = ":", into=c("chr", "start", "end", "id")) %>% separate(id, sep = "_", into=c("gene", "strand", "peak")) %>% dplyr::select(peak)
print(paste("Sig peaks=", nrow(file_sig), sep=" "))
return(file_sig)
}
randompeak=function(SigSnpList){
nsnp=nrow(SigSnpList)
randomPeakDF= permNuc %>% sample_n(nsnp) %>% separate(pid, sep = ":", into=c("chr", "start", "end", "id")) %>% separate(id, sep = "_", into=c("gene", "strand", "peak")) %>% dplyr::select(peak)
return(randomPeakDF)
}
Peak_overlap=function(snp_list){
filt_tot=permTot %>% separate(pid, sep = ":", into=c("chr", "start", "end", "id")) %>% separate(id, sep = "_", into=c("gene", "strand", "peak")) %>% semi_join(snp_list, by="peak")
print(paste("Total overlap=", nrow(filt_tot), sep=" "))
return(filt_tot)
}
makeQQ_peak=function(test, baseline){
p0test=pi0est(test$bpval)
p1test=1-p0test$pi0
plot=qqplot(-log10(runif(nrow(baseline))), -log10(baseline$bpval), ylab="Observed", xlab="Expected", main="Peaks with Significant QTLs in Nuclear \n pvalues in Total")
points(sort(-log10(runif(nrow(test)))), sort(-log10(test$bpval)), col= alpha("Red"))
abline(0,1)
text(1.5,3, paste("pi_1=", round(p1test, digit=3), sep=" "))
return(plot)
}
testPeaks=sigpeak(1)
basePeaks=randompeak(testPeaks)
testSet=Peak_overlap(testPeaks)
baselineSet=Peak_overlap(basePeaks)
png(plotfile)
plot=makeQQ_peak(testSet,baselineSet )
dev.off()
}
SigNucPeakOverlapTot(1, "../output/plots/SigNucPeakTotpval.png")
[1] "Sig peaks= 880"
[1] "Total overlap= 353"
[1] "Total overlap= 348"
quartz_off_screen
2
SigTotPeakOverlapNuc=function(cutoff, plotfile){
sigpeak=function(cutoff){
permTot$bh=p.adjust(permTot$bpval, method="fdr")
file_sig=permTot %>% filter(-log10(bh)> cutoff) %>% separate(pid, sep = ":", into=c("chr", "start", "end", "id")) %>% separate(id, sep = "_", into=c("gene", "strand", "peak")) %>% dplyr::select(peak)
print(paste("Sig peaks=", nrow(file_sig), sep=" "))
return(file_sig)
}
randompeak=function(SigSnpList){
nsnp=nrow(SigSnpList)
randomPeakDF= permTot %>% sample_n(nsnp) %>% separate(pid, sep = ":", into=c("chr", "start", "end", "id")) %>% separate(id, sep = "_", into=c("gene", "strand", "peak")) %>% dplyr::select(peak)
return(randomPeakDF)
}
Peak_overlap=function(snp_list){
filt_nuc=permNuc %>% separate(pid, sep = ":", into=c("chr", "start", "end", "id")) %>% separate(id, sep = "_", into=c("gene", "strand", "peak")) %>% semi_join(snp_list, by="peak")
print(paste("Nuclear overlap=", nrow(filt_nuc), sep=" "))
return(filt_nuc)
}
makeQQ_peak=function(test, baseline){
p0test=pi0est(test$bpval)
p1test=1-p0test$pi0
plot=qqplot(-log10(runif(nrow(baseline))), -log10(baseline$bpval), ylab="Observed", xlab="Expected", main="Peaks with Significant QTLs in Total \n pvalues in Nuclear")
points(sort(-log10(runif(nrow(test)))), sort(-log10(test$bpval)), col= alpha("Red"))
abline(0,1)
text(2,3, paste("pi_1=", round(p1test, digit=3), sep=" "))
return(plot)
}
testPeaks=sigpeak(1)
basePeaks=randompeak(testPeaks)
testSet=Peak_overlap(testPeaks)
baselineSet=Peak_overlap(basePeaks)
png(plotfile)
plot=makeQQ_peak(testSet,baselineSet )
dev.off()
}
SigTotPeakOverlapNuc(1, "../output/plots/SigTotPeakNucpval.png")
[1] "Sig peaks= 118"
[1] "Nuclear overlap= 69"
[1] "Nuclear overlap= 70"
quartz_off_screen
2
Try historgram:
SigNucPeakOverlapTot_hist=function(cutoff, plotfile){
sigpeak=function(cutoff){
permNuc$bh=p.adjust(permNuc$bpval, method="fdr")
file_sig=permNuc %>% filter(-log10(bh)> cutoff) %>%separate(pid, sep = ":", into=c("chr", "start", "end", "id")) %>% separate(id, sep = "_", into=c("gene", "strand", "peak")) %>% dplyr::select(peak)
print(paste("Sig peaks=", nrow(file_sig), sep=" "))
return(file_sig)
}
randompeak=function(SigSnpList){
nsnp=nrow(SigSnpList)
randomPeakDF= permNuc %>% sample_n(nsnp) %>% separate(pid, sep = ":", into=c("chr", "start", "end", "id")) %>% separate(id, sep = "_", into=c("gene", "strand", "peak")) %>% dplyr::select(peak)
return(randomPeakDF)
}
Peak_overlap=function(snp_list){
filt_tot=permTot %>% separate(pid, sep = ":", into=c("chr", "start", "end", "id")) %>% separate(id, sep = "_", into=c("gene", "strand", "peak")) %>% semi_join(snp_list, by="peak")
print(paste("Total overlap=", nrow(filt_tot), sep=" "))
return(filt_tot)
}
makeQQ_peak=function(test, baseline){
p0test=pi0est(test$bpval)
p1test=1-p0test$pi0
plot=hist(test$bpval, breaks=20, main="Peaks with Significant QTLs in Nuclear \n Pvalues in Total", xlab="Total APAqtl Pvalue")
text(.8,140, paste("pi_1=", round(p1test, digit=3), sep=" "))
return(plot)
}
testPeaks=sigpeak(1)
basePeaks=randompeak(testPeaks)
testSet=Peak_overlap(testPeaks)
baselineSet=Peak_overlap(basePeaks)
png(plotfile)
plot=makeQQ_peak(testSet,baselineSet )
dev.off()
}
SigNucPeakOverlapTot_hist(1, "../output/plots/SigNucPeakTotpval_hist.png")
[1] "Sig peaks= 880"
[1] "Total overlap= 353"
[1] "Total overlap= 352"
quartz_off_screen
2
SigTotPeakOverlapNuc_hist=function(cutoff, plotfile){
sigpeak=function(cutoff){
permTot$bh=p.adjust(permTot$bpval, method="fdr")
file_sig=permTot %>% filter(-log10(bh)> cutoff) %>% separate(pid, sep = ":", into=c("chr", "start", "end", "id")) %>% separate(id, sep = "_", into=c("gene", "strand", "peak")) %>% dplyr::select(peak)
print(paste("Sig peaks=", nrow(file_sig), sep=" "))
return(file_sig)
}
randompeak=function(SigSnpList){
nsnp=nrow(SigSnpList)
randomPeakDF= permTot %>% sample_n(nsnp) %>% separate(pid, sep = ":", into=c("chr", "start", "end", "id")) %>% separate(id, sep = "_", into=c("gene", "strand", "peak")) %>% dplyr::select(peak)
return(randomPeakDF)
}
Peak_overlap=function(snp_list){
filt_nuc=permNuc %>% separate(pid, sep = ":", into=c("chr", "start", "end", "id")) %>% separate(id, sep = "_", into=c("gene", "strand", "peak")) %>% semi_join(snp_list, by="peak")
print(paste("Nuclear overlap=", nrow(filt_nuc), sep=" "))
return(filt_nuc)
}
makeQQ_peak=function(test, baseline){
p0test=pi0est(test$bpval)
p1test=1-p0test$pi0
plot=hist(test$bpval, breaks=20, main="Peaks with Significant QTLs in Total \n Pvalues in Nuclear",xlab="Nuclear APAqtl Pvalue")
text(.8,40, paste("pi_1=", round(p1test, digit=3), sep=" "))
return(plot)
}
testPeaks=sigpeak(1)
basePeaks=randompeak(testPeaks)
testSet=Peak_overlap(testPeaks)
baselineSet=Peak_overlap(basePeaks)
png(plotfile)
plot=makeQQ_peak(testSet,baselineSet )
dev.off()
}
SigTotPeakOverlapNuc_hist(1, "../output/plots/SigTotPeakNucpval_hist.png")
[1] "Sig peaks= 118"
[1] "Nuclear overlap= 69"
[1] "Nuclear overlap= 60"
quartz_off_screen
2
sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS 10.14.1
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] bindrcpp_0.2.2 qvalue_2.12.0 workflowr_1.2.0 reshape2_1.4.3
[5] forcats_0.3.0 stringr_1.4.0 dplyr_0.7.6 purrr_0.2.5
[9] readr_1.1.1 tidyr_0.8.1 tibble_1.4.2 ggplot2_3.0.0
[13] tidyverse_1.2.1
loaded via a namespace (and not attached):
[1] tidyselect_0.2.4 splines_3.5.1 haven_1.1.2 lattice_0.20-35
[5] colorspace_1.3-2 htmltools_0.3.6 yaml_2.2.0 rlang_0.2.2
[9] pillar_1.3.0 glue_1.3.0 withr_2.1.2 modelr_0.1.2
[13] readxl_1.1.0 bindr_0.1.1 plyr_1.8.4 munsell_0.5.0
[17] gtable_0.2.0 cellranger_1.1.0 rvest_0.3.2 evaluate_0.13
[21] knitr_1.20 broom_0.5.0 Rcpp_0.12.19 scales_1.0.0
[25] backports_1.1.2 jsonlite_1.6 fs_1.2.6 hms_0.4.2
[29] digest_0.6.17 stringi_1.2.4 grid_3.5.1 rprojroot_1.3-2
[33] cli_1.0.1 tools_3.5.1 magrittr_1.5 lazyeval_0.2.1
[37] crayon_1.3.4 whisker_0.3-2 pkgconfig_2.0.2 xml2_1.2.0
[41] lubridate_1.7.4 assertthat_0.2.0 rmarkdown_1.11 httr_1.3.1
[45] rstudioapi_0.9.0 R6_2.3.0 nlme_3.1-137 git2r_0.24.0
[49] compiler_3.5.1