Last updated: 2019-03-25
Checks: 6 0
Knit directory: threeprimeseq/analysis/
This reproducible R Markdown analysis was created with workflowr (version 1.2.0). The Report tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(12345)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: data/.DS_Store
Ignored: data/perm_QTL_trans_noMP_5percov/
Ignored: output/.DS_Store
Untracked files:
Untracked: KalistoAbundance18486.txt
Untracked: analysis/4suDataIGV.Rmd
Untracked: analysis/AdaptTonyExampleplots.Rmd
Untracked: analysis/DirectionapaQTL.Rmd
Untracked: analysis/EvaleQTLs.Rmd
Untracked: analysis/YL_QTL_test.Rmd
Untracked: analysis/groSeqAnalysis.Rmd
Untracked: analysis/ncbiRefSeq_sm.sort.mRNA.bed
Untracked: analysis/peaksWithMisprimming.Rmd
Untracked: analysis/snake.config.notes.Rmd
Untracked: analysis/verifyBAM.Rmd
Untracked: analysis/verifybam_dubs.Rmd
Untracked: code/PeaksToCoverPerReads.py
Untracked: code/strober_pc_pve_heatmap_func.R
Untracked: data/18486.genecov.txt
Untracked: data/APApeaksYL.total.inbrain.bed
Untracked: data/AllPeak_counts/
Untracked: data/ApaQTLs/
Untracked: data/ApaQTLs_otherPhen/
Untracked: data/CTCF/
Untracked: data/ChromHmmOverlap/
Untracked: data/DistTXN2Peak_genelocAnno/
Untracked: data/EmpiricalDists/
Untracked: data/FeatureoverlapPeaks/
Untracked: data/GM12878.chromHMM.bed
Untracked: data/GM12878.chromHMM.txt
Untracked: data/GWAS_overlap/
Untracked: data/LianoglouLCL/
Untracked: data/LocusZoom/
Untracked: data/LocusZoom_Unexp/
Untracked: data/LocusZoom_proc/
Untracked: data/MatchedSnps/
Untracked: data/NucSpecQTL/
Untracked: data/NuclearApaQTLs.txt
Untracked: data/PeakCounts/
Untracked: data/PeakCounts_noMP_5perc/
Untracked: data/PeakCounts_noMP_genelocanno/
Untracked: data/PeakUsage/
Untracked: data/PeakUsage_noMP/
Untracked: data/PeakUsage_noMP_GeneLocAnno/
Untracked: data/PeaksUsed/
Untracked: data/PeaksUsed_noMP_5percCov/
Untracked: data/PolyA_DB/
Untracked: data/QTL_overlap/
Untracked: data/RNAdecay/
Untracked: data/RNAkalisto/
Untracked: data/RefSeq_annotations/
Untracked: data/Replicates_usage/
Untracked: data/Signal_Loc/
Untracked: data/TotalApaQTLs.txt
Untracked: data/Totalpeaks_filtered_clean.bed
Untracked: data/UnderstandPeaksQC/
Untracked: data/WASP_STAT/
Untracked: data/YL-SP-18486-T-combined-genecov.txt
Untracked: data/YL-SP-18486-T_S9_R1_001-genecov.txt
Untracked: data/YL_QTL_test/
Untracked: data/apaExamp/
Untracked: data/apaExamp_proc/
Untracked: data/apaQTL_examp_noMP/
Untracked: data/bedgraph_peaks/
Untracked: data/bin200.5.T.nuccov.bed
Untracked: data/bin200.Anuccov.bed
Untracked: data/bin200.nuccov.bed
Untracked: data/clean_peaks/
Untracked: data/comb_map_stats.csv
Untracked: data/comb_map_stats.xlsx
Untracked: data/comb_map_stats_39ind.csv
Untracked: data/combined_reads_mapped_three_prime_seq.csv
Untracked: data/diff_iso_GeneLocAnno/
Untracked: data/diff_iso_proc/
Untracked: data/diff_iso_trans/
Untracked: data/eQTL_inAPA/
Untracked: data/eQTLs_Lietal/
Untracked: data/ensemble_to_genename.txt
Untracked: data/example_gene_peakQuant/
Untracked: data/explainProtVar/
Untracked: data/filtPeakOppstrand_cov_noMP_GeneLocAnno_5perc/
Untracked: data/filtered_APApeaks_merged_allchrom_refseqTrans.closest2End.bed
Untracked: data/filtered_APApeaks_merged_allchrom_refseqTrans.closest2End.noties.bed
Untracked: data/first50lines_closest.txt
Untracked: data/gencov.test.csv
Untracked: data/gencov.test.txt
Untracked: data/gencov_zero.test.csv
Untracked: data/gencov_zero.test.txt
Untracked: data/gene_cov/
Untracked: data/joined
Untracked: data/leafcutter/
Untracked: data/merged_combined_YL-SP-threeprimeseq.bg
Untracked: data/molPheno_noMP/
Untracked: data/mol_overlap/
Untracked: data/mol_pheno/
Untracked: data/nom_QTL/
Untracked: data/nom_QTL_opp/
Untracked: data/nom_QTL_trans/
Untracked: data/nuc6up/
Untracked: data/nuc_10up/
Untracked: data/other_qtls/
Untracked: data/pQTL_inAPA/
Untracked: data/pQTL_otherphen/
Untracked: data/pacbio_cov/
Untracked: data/peakPerRefSeqGene/
Untracked: data/peaks4DT/
Untracked: data/perm_QTL/
Untracked: data/perm_QTL_GeneLocAnno_noMP_5percov/
Untracked: data/perm_QTL_GeneLocAnno_noMP_5percov_3UTR/
Untracked: data/perm_QTL_diffWindow/
Untracked: data/perm_QTL_opp/
Untracked: data/perm_QTL_trans/
Untracked: data/perm_QTL_trans_filt/
Untracked: data/protAndAPAAndExplmRes.Rda
Untracked: data/protAndAPAlmRes.Rda
Untracked: data/protAndExpressionlmRes.Rda
Untracked: data/reads_mapped_three_prime_seq.csv
Untracked: data/smash.cov.results.bed
Untracked: data/smash.cov.results.csv
Untracked: data/smash.cov.results.txt
Untracked: data/smash_testregion/
Untracked: data/ssFC200.cov.bed
Untracked: data/temp.file1
Untracked: data/temp.file2
Untracked: data/temp.gencov.test.txt
Untracked: data/temp.gencov_zero.test.txt
Untracked: data/threePrimeSeqMetaData.csv
Untracked: data/threePrimeSeqMetaData55Ind.txt
Untracked: data/threePrimeSeqMetaData55Ind.xlsx
Untracked: data/threePrimeSeqMetaData55Ind_noDup.txt
Untracked: data/threePrimeSeqMetaData55Ind_noDup.xlsx
Untracked: data/threePrimeSeqMetaData55Ind_noDup_WASPMAP.txt
Untracked: data/threePrimeSeqMetaData55Ind_noDup_WASPMAP.xlsx
Untracked: data/threePrimeSeqMetaData55Ind_redobatch4.xlsx
Untracked: data/~$threePrimeSeqMetaData55Ind_redobatch4.xlsx
Untracked: manuscript/
Untracked: output/LZ/
Untracked: output/deeptools_plots/
Untracked: output/picard/
Untracked: output/plots/
Untracked: output/qual.fig2.pdf
Unstaged changes:
Modified: analysis/28ind.peak.explore.Rmd
Modified: analysis/CompareLianoglouData.Rmd
Modified: analysis/NewPeakPostMP.Rmd
Modified: analysis/NuclearSpecQTL.Rmd
Modified: analysis/PeakToXper.Rmd
Modified: analysis/RNAdecayAndAPA.Rmd
Modified: analysis/apaQTLoverlapGWAS.Rmd
Modified: analysis/characterize_apaQTLs.Rmd
Modified: analysis/cleanupdtseq.internalpriming.Rmd
Modified: analysis/coloc_apaQTLs_protQTLs.Rmd
Modified: analysis/dif.iso.usage.leafcutter.Rmd
Modified: analysis/diffIsoAnalysisNewMapping.Rmd
Modified: analysis/diff_iso_pipeline.Rmd
Modified: analysis/explainpQTLs.Rmd
Modified: analysis/explore.filters.Rmd
Modified: analysis/fixBWChromNames.Rmd
Modified: analysis/flash2mash.Rmd
Modified: analysis/initialPacBioQuant.Rmd
Modified: analysis/mispriming_approach.Rmd
Modified: analysis/overlapMolQTL.Rmd
Modified: analysis/overlapMolQTL.opposite.Rmd
Modified: analysis/overlap_qtls.Rmd
Modified: analysis/peakOverlap_oppstrand.Rmd
Modified: analysis/peakQCPPlots.Rmd
Modified: analysis/pheno.leaf.comb.Rmd
Modified: analysis/pipeline_55Ind.Rmd
Modified: analysis/swarmPlots_QTLs.Rmd
Modified: analysis/test.max2.Rmd
Modified: analysis/test.smash.Rmd
Modified: analysis/understandPeaks.Rmd
Modified: analysis/unexplainedeQTL_analysis.Rmd
Modified: code/Snakefile
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view them.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | f3740ea | Briana Mittleman | 2019-03-25 | add top and bottom dnase |
html | 3eac464 | Briana Mittleman | 2019-03-23 | Build site. |
Rmd | 4939dfe | Briana Mittleman | 2019-03-23 | look at mnase at all categories |
html | 1b7f088 | Briana Mittleman | 2019-03-21 | Build site. |
Rmd | c02e927 | Briana Mittleman | 2019-03-21 | add mnase merge chipseq |
html | a6b0fe4 | Briana Mittleman | 2019-03-20 | Build site. |
Rmd | 54168fd | Briana Mittleman | 2019-03-20 | add histone mod analysis |
library(tidyverse)
── Attaching packages ──────────────────────────────────────────────────────── tidyverse 1.2.1 ──
✔ ggplot2 3.1.0 ✔ purrr 0.3.1
✔ tibble 2.0.1 ✔ dplyr 0.8.0.1
✔ tidyr 0.8.3 ✔ stringr 1.4.0
✔ readr 1.3.1 ✔ forcats 0.4.0
Warning: package 'tibble' was built under R version 3.5.2
Warning: package 'tidyr' was built under R version 3.5.2
Warning: package 'purrr' was built under R version 3.5.2
Warning: package 'dplyr' was built under R version 3.5.2
Warning: package 'stringr' was built under R version 3.5.2
Warning: package 'forcats' was built under R version 3.5.2
── Conflicts ─────────────────────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag() masks stats::lag()
library(workflowr)
This is workflowr version 1.2.0
Run ?workflowr for help getting started
library(data.table)
Warning: package 'data.table' was built under R version 3.5.2
Attaching package: 'data.table'
The following objects are masked from 'package:dplyr':
between, first, last
The following object is masked from 'package:purrr':
transpose
library(cowplot)
Warning: package 'cowplot' was built under R version 3.5.2
Attaching package: 'cowplot'
The following object is masked from 'package:ggplot2':
ggsave
This article talks about chromatin modifications for heterochromatin downstream of PAS. I will look at enrichment for repressive histone marks downstream of my called PAS.
Repressive marks H3K27me3, H3K9me3
http://hgdownload.soe.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeUwHistone/
H3k27me3 H3k36me3 H3k4me3
Deeptools plot
h3k27me3DTmypeaks.sh
#!/bin/bash
#SBATCH --job-name=h3k27me3DTmypeaks
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=h3k27me3DTmypeaks.out
#SBATCH --error=h3k27me3DTmypeaks.err
#SBATCH --partition=bigmem2
#SBATCH --mem=100G
#SBATCH --mail-type=END
module load Anaconda3
source activate three-prime-env
computeMatrix reference-point -S /project2/gilad/briana/threeprimeseq/data/ChipSeq/wgEncodeUwHistoneGm06990H3k27me3StdRawRep1.bigWig -R /project2/gilad/briana/threeprimeseq/data/peaks4DT/APAPeaks_5percCov_fixedStrand.bed -b 1000 -a 1000 -out /project2/gilad/briana/threeprimeseq/data/ChipSeq/H3K27me3_myPeaksNompfilt.gz
plotHeatmap --sortRegions descend -m /project2/gilad/briana/threeprimeseq/data/ChipSeq/H3K27me3_myPeaksNompfilt.gz --refPointLabel "Called PAS" --plotTitle "H3K27me3 at All Called PAS" --heatmapHeight 7 --colorMap YlGnBu -out /project2/gilad/briana/threeprimeseq/data/ChipSeq/H3K27me3_myPeaksNompfilt.png
Put all of the marks on one plot:
I also want to just use the last base of the peak APAPAS_5percCov_fixedStrand.bed histonemarksDTmypeaks.sh
#!/bin/bash
#SBATCH --job-name=histonemarksDTmypeaks
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=histonemarksDTmypeaks.out
#SBATCH --error=histonemarksDTmypeaks.err
#SBATCH --partition=bigmem2
#SBATCH --mem=100G
#SBATCH --mail-type=END
module load Anaconda3
source activate three-prime-env
computeMatrix reference-point -S /project2/gilad/briana/threeprimeseq/data/ChipSeq/wgEncodeUwHistoneGm06990H3k27me3StdRawRep1.bigWig /project2/gilad/briana/threeprimeseq/data/ChipSeq/wgEncodeUwHistoneGm06990H3k36me3StdRawRep1.bigWig /project2/gilad/briana/threeprimeseq/data/ChipSeq/wgEncodeUwHistoneGm06990H3k4me3StdRawRep1.bigWig -R /project2/gilad/briana/threeprimeseq/data/peaks4DT/APAPAS_5percCov_fixedStrand.bed -b 1000 -a 1000 -out /project2/gilad/briana/threeprimeseq/data/ChipSeq/HistMarks_myPeaksNompfilt.gz
plotHeatmap --sortRegions descend -m /project2/gilad/briana/threeprimeseq/data/ChipSeq/HistMarks_myPeaksNompfilt.gz --refPointLabel "Called PAS" --plotTitle "Histone marks at All Called PAS" --heatmapHeight 7 --colorMap YlGnBu -out /project2/gilad/briana/threeprimeseq/data/ChipSeq/HistMarks_myPeaksNompfilt.png
Scales are too different to put these on the same spot:
H3k27me3DTmyPAS.sh
#!/bin/bash
#SBATCH --job-name=H3k27me3DTmypeaks.sh
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=H3k27me3DTmypeaks.out
#SBATCH --error=H3k27me3DTmypeaks.err
#SBATCH --partition=bigmem2
#SBATCH --mem=100G
#SBATCH --mail-type=END
module load Anaconda3
source activate three-prime-env
computeMatrix reference-point -S /project2/gilad/briana/threeprimeseq/data/ChipSeq/MergedGm06990H3k27me3.bw -R /project2/gilad/briana/threeprimeseq/data/peaks4DT/APAPAS_5percCov_fixedStrand.bed -b 5000 -a 5000 -out /project2/gilad/briana/threeprimeseq/data/ChipSeq/H3k27me3_myPeaksNompfilt.gz --outFileNameMatrix /project2/gilad/briana/threeprimeseq/data/ChipSeq/H3k27me3_myPeaksNompfilt_matrix.txt --outFileSortedRegions /project2/gilad/briana/threeprimeseq/data/ChipSeq/H3k27me3_myPeaksNompfilt_SortedRegions.txt
plotHeatmap --sortRegions descend -m /project2/gilad/briana/threeprimeseq/data/ChipSeq/H3k27me3_myPeaksNompfilt.gz --refPointLabel "Called PAS" --plotTitle "H3k27me3 at All Called PAS" --heatmapHeight 7 --colorMap YlGnBu -out /project2/gilad/briana/threeprimeseq/data/ChipSeq/H3k27me3_myPeaksNompfilt.png
H3k36me3DTmyPAS.sh
#!/bin/bash
#SBATCH --job-name=H3k27me3DTmypeaks.sh
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=H3k36me3DTmypeaks.out
#SBATCH --error=H3k36me3DTmypeaks.err
#SBATCH --partition=bigmem2
#SBATCH --mem=100G
#SBATCH --mail-type=END
module load Anaconda3
source activate three-prime-env
computeMatrix reference-point -S /project2/gilad/briana/threeprimeseq/data/ChipSeq/MergedGm06990H3k36me3.bw -R /project2/gilad/briana/threeprimeseq/data/peaks4DT/APAPAS_5percCov_fixedStrand.bed -b 5000 -a 5000 -out /project2/gilad/briana/threeprimeseq/data/ChipSeq/H3k36me3_myPeaksNompfilt.gz --outFileNameMatrix /project2/gilad/briana/threeprimeseq/data/ChipSeq/H3k36me3_myPeaksNompfilt_matrix.txt --outFileSortedRegions /project2/gilad/briana/threeprimeseq/data/ChipSeq/H3k36me3_myPeaksNompfilt_SortedRegions.txt
plotHeatmap --sortRegions descend -m /project2/gilad/briana/threeprimeseq/data/ChipSeq/H3k36me3_myPeaksNompfilt.gz --refPointLabel "Called PAS" --plotTitle "H3k36me3 at All Called PAS" --heatmapHeight 7 --colorMap YlGnBu -out /project2/gilad/briana/threeprimeseq/data/ChipSeq/H3k36me3_myPeaksNompfilt.png
H3k4me3DTmyPAS.sh
#!/bin/bash
#SBATCH --job-name=H3k4me3DTmypeaks.sh
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=H3k36me3DTmypeaks.out
#SBATCH --error=H3k36me3DTmypeaks.err
#SBATCH --partition=bigmem2
#SBATCH --mem=100G
#SBATCH --mail-type=END
module load Anaconda3
source activate three-prime-env
computeMatrix reference-point -S /project2/gilad/briana/threeprimeseq/data/ChipSeq/MergedGm06990H3k4me3.bw -R /project2/gilad/briana/threeprimeseq/data/peaks4DT/APAPAS_5percCov_fixedStrand.bed -b 5000 -a 5000 -out /project2/gilad/briana/threeprimeseq/data/ChipSeq/H3k4me3_myPeaksNompfilt.gz --outFileNameMatrix project2/gilad/briana/threeprimeseq/data/ChipSeq/H3k4me3_myPeaksNompfilt_matrix.txt --outFileSortedRegions /project2/gilad/briana/threeprimeseq/data/ChipSeq/H3k4me3_myPeaksNompfilt_SortedRegions.txt
plotHeatmap --sortRegions descend -m /project2/gilad/briana/threeprimeseq/data/ChipSeq/H3k4me3_myPeaksNompfilt.gz --refPointLabel "Called PAS" --plotTitle "H3k4me3 at All Called PAS" --heatmapHeight 7 --colorMap YlGnBu -out /project2/gilad/briana/threeprimeseq/data/ChipSeq/H3k4me3_myPeaksNompfilt.png
mergeH3k27me3.sh
#!/bin/bash
#SBATCH --job-name=mergeH3k27me3
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=mergeH3k27me3.out
#SBATCH --error=mergeH3k27me3.err
#SBATCH --partition=broadwl
#SBATCH --mem=36G
#SBATCH --mail-type=END
module load Anaconda3
source activate three-prime-env
bigWigMerge /project2/gilad/briana/threeprimeseq/data/ChipSeq/wgEncodeUwHistoneGm06990H3k27me3StdRawRep1.bigWig /project2/gilad/briana/threeprimeseq/data/ChipSeq/wgEncodeUwHistoneGm06990H3k27me3StdRawRep2.bigWig /project2/gilad/briana/threeprimeseq/data/ChipSeq/MergedGm06990H3k27me3.bedGraph
sort -k1,1 -k2,2n /project2/gilad/briana/threeprimeseq/data/ChipSeq/MergedGm06990H3k27me3.bedGraph /project2/gilad/briana/threeprimeseq/data/ChipSeq/MergedGm06990H3k27me3.sort.bedGraph
bedGraphToBigWig /project2/gilad/briana/threeprimeseq/data/ChipSeq/MergedGm06990H3k27me3.sort.bedGraph /project2/gilad/briana/genome_anotation_data/chrom.length.chr.txt /project2/gilad/briana/threeprimeseq/data/ChipSeq/MergedGm06990H3k27me3.bw
mergeH3k36me3.sh
#!/bin/bash
#SBATCH --job-name=mergeH3k36me3
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=mergeH3k36me3.out
#SBATCH --error=mergeH3k36me3.err
#SBATCH --partition=broadwl
#SBATCH --mem=36G
#SBATCH --mail-type=END
module load Anaconda3
source activate three-prime-env
bigWigMerge /project2/gilad/briana/threeprimeseq/data/ChipSeq/wgEncodeUwHistoneGm06990H3k36me3StdRawRep1.bigWig /project2/gilad/briana/threeprimeseq/data/ChipSeq/wgEncodeUwHistoneGm06990H3k36me3StdRawRep2.bigWig /project2/gilad/briana/threeprimeseq/data/ChipSeq/MergedGm06990H3k36me3.bedGraph
sort -k1,1 -k2,2n /project2/gilad/briana/threeprimeseq/data/ChipSeq/MergedGm06990H3k36me3.bedGraph > /project2/gilad/briana/threeprimeseq/data/ChipSeq/MergedGm06990H3k36me3.sort.bedGraph
bedGraphToBigWig /project2/gilad/briana/threeprimeseq/data/ChipSeq/MergedGm06990H3k36me3.sort.bedGraph /project2/gilad/briana/genome_anotation_data/chrom.length.chr.txt /project2/gilad/briana/threeprimeseq/data/ChipSeq/MergedGm06990H3k36me3.bw
mergeH3k4me3.sh
#!/bin/bash
#SBATCH --job-name=mergeH3k4me3
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=mergeH3k4me3.out
#SBATCH --error=mergeH3k4me3.err
#SBATCH --partition=broadwl
#SBATCH --mem=36G
#SBATCH --mail-type=END
module load Anaconda3
source activate three-prime-env
bigWigMerge /project2/gilad/briana/threeprimeseq/data/ChipSeq/wgEncodeUwHistoneGm06990H3k4me3StdRawRep1.bigWig /project2/gilad/briana/threeprimeseq/data/ChipSeq/wgEncodeUwHistoneGm06990H3k4me3StdRawRep2.bigWig /project2/gilad/briana/threeprimeseq/data/ChipSeq/MergedGm06990H3k4me3.bedGraph
sort -k1,1 -k2,2n /project2/gilad/briana/threeprimeseq/data/ChipSeq/MergedGm06990H3k4me3.bedGraph >/project2/gilad/briana/threeprimeseq/data/ChipSeq/MergedGm06990H3k4me3.sort.bedGraph
bedGraphToBigWig /project2/gilad/briana/threeprimeseq/data/ChipSeq/MergedGm06990H3k4me3.sort.bedGraph /project2/gilad/briana/genome_anotation_data/chrom.length.chr.txt /project2/gilad/briana/threeprimeseq/data/ChipSeq/MergedGm06990H3k4me3.bw
MNASEmyPAS.sh
#!/bin/bash
#SBATCH --job-name=MNASEmyPAS
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=MNASEmyPAS.out
#SBATCH --error=MNASEmyPAS.err
#SBATCH --partition=bigmem2
#SBATCH --mem=100G
#SBATCH --mail-type=END
module load Anaconda3
source activate three-prime-env
computeMatrix reference-point -S /project2/gilad/briana/threeprimeseq/data/ChipSeq/ENCFF000VME.bigWig -R /project2/gilad/briana/threeprimeseq/data/peaks4DT/APAPAS_5percCov_fixedStrand.bed -b 1000 -a 1000 -out /project2/gilad/briana/threeprimeseq/data/ChipSeq/mnase_myPeaksNompfilt.gz
plotHeatmap --sortRegions descend -m /project2/gilad/briana/threeprimeseq/data/ChipSeq/mnase_myPeaksNompfilt.gz --refPointLabel "Called PAS" --plotTitle "MNASE at All Called PAS" --heatmapHeight 7 --colorMap YlGnBu -out /project2/gilad/briana/threeprimeseq/data/ChipSeq/mnase_myPeaksNompfilt.png
Try second mnase track.
MNASEmyPAS_secondfile.sh
#!/bin/bash
#SBATCH --job-name=MNASEmyPAS_secondfile
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=MNASEmyPAS_secondfile.out
#SBATCH --error=MNASEmyPAS_secondfile.err
#SBATCH --partition=bigmem2
#SBATCH --mem=100G
#SBATCH --mail-type=END
module load Anaconda3
source activate three-prime-env
computeMatrix reference-point -S /project2/gilad/briana/threeprimeseq/data/ChipSeq/wgEncodeSydhNsomeGm12878Sig.bigWig -R /project2/gilad/briana/threeprimeseq/data/peaks4DT/APAPAS_5percCov_fixedStrand.bed -b 1000 -a 1000 -out /project2/gilad/briana/threeprimeseq/data/ChipSeq/mnase2_myPeaksNompfilt.gz
plotHeatmap --sortRegions descend -m /project2/gilad/briana/threeprimeseq/data/ChipSeq/mnase2_myPeaksNompfilt.gz --refPointLabel "Called PAS" --plotTitle "MNASE at All Called PAS" --heatmapHeight 7 --colorMap YlGnBu -out /project2/gilad/briana/threeprimeseq/data/ChipSeq/mnase2_myPeaksNompfilt.png
Convert to PAS ratehr than peak: APAPeaks_5percCov_fixedStrand_INTRON.bed
python Peak2PAS.py /project2/gilad/briana/threeprimeseq/data/peaks4DT/APAPeaks_5percCov_fixedStrand_INTRON.bed /project2/gilad/briana/threeprimeseq/data/peaks4DT/APAPAS_5percCov_fixedStrand_INTRON.bed
Run this with intronic vs utr
MNASEmyPASIntron.sh
#!/bin/bash
#SBATCH --job-name=MNASEmyPASIntron
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=MNASEmyPASIntron.out
#SBATCH --error=MNASEmyPASIntron.err
#SBATCH --partition=bigmem2
#SBATCH --mem=100G
#SBATCH --mail-type=END
module load Anaconda3
source activate three-prime-env
computeMatrix reference-point -S /project2/gilad/briana/threeprimeseq/data/ChipSeq/ENCFF000VME.bigWig -R /project2/gilad/briana/threeprimeseq/data/peaks4DT/APAPAS_5percCov_fixedStrand_INTRON.bed -b 1000 -a 1000 -out /project2/gilad/briana/threeprimeseq/data/ChipSeq/mnase_myPeaksIntronNompfilt.gz
plotHeatmap --sortRegions descend -m /project2/gilad/briana/threeprimeseq/data/ChipSeq/mnase_myPeaksIntronNompfilt.gz --refPointLabel "Called PAS" --plotTitle "MNASE at Intronic Called PAS" --heatmapHeight 7 --colorMap YlGnBu -out /project2/gilad/briana/threeprimeseq/data/ChipSeq/mnase_myPeaksIntronNompfilt.png
Nuclear specific:
python Peak2PAS.py /project2/gilad/briana/threeprimeseq/data/peaks4DT/APAPeaks_5percCov_fixedStrand_SigUsageNuc.bed /project2/gilad/briana/threeprimeseq/data/peaks4DT/APAPAS_5percCov_fixedStrand_SigUsageNuc.bed
MNASEmyPASNuclear.sh
#!/bin/bash
#SBATCH --job-name=MNASEmyPASNuclear
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=MNASEmyPASNuclear.out
#SBATCH --error=MNASEmyPASNuclear.err
#SBATCH --partition=bigmem2
#SBATCH --mem=100G
#SBATCH --mail-type=END
module load Anaconda3
source activate three-prime-env
computeMatrix reference-point -S /project2/gilad/briana/threeprimeseq/data/ChipSeq/ENCFF000VME.bigWig -R /project2/gilad/briana/threeprimeseq/data/peaks4DT/APAPAS_5percCov_fixedStrand_SigUsageNuc.bed -b 1000 -a 1000 -out /project2/gilad/briana/threeprimeseq/data/ChipSeq/mnase_myPeaksNuclearNompfilt.gz
plotHeatmap --sortRegions descend -m /project2/gilad/briana/threeprimeseq/data/ChipSeq/mnase_myPeaksNuclearNompfilt.gz --refPointLabel "Called PAS" --plotTitle "MNASE at Nuclear specific PAS" --heatmapHeight 7 --colorMap YlGnBu -out /project2/gilad/briana/threeprimeseq/data/ChipSeq/mnase_myPeaksNuclearNompfilt.png
Nuclear Intronic:
APAPeaks_5percCov_fixedStrand_SigUsageNuc_Intron.bed
python Peak2PAS.py /project2/gilad/briana/threeprimeseq/data/peaks4DT/APAPeaks_5percCov_fixedStrand_SigUsageNuc_Intron.bed /project2/gilad/briana/threeprimeseq/data/peaks4DT/APAPAS_5percCov_fixedStrand_SigUsageNuc_Intron.bed
MNASEmyPASNuclearIntronic.sh
#!/bin/bash
#SBATCH --job-name=MNASEmyPASNuclearIntronic
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=MNASEmyPASNuclearIntronic.out
#SBATCH --error=MNASEmyPASNuclearIntronic.err
#SBATCH --partition=bigmem2
#SBATCH --mem=100G
#SBATCH --mail-type=END
module load Anaconda3
source activate three-prime-env
computeMatrix reference-point -S /project2/gilad/briana/threeprimeseq/data/ChipSeq/ENCFF000VME.bigWig -R /project2/gilad/briana/threeprimeseq/data/peaks4DT/APAPAS_5percCov_fixedStrand_SigUsageNuc_Intron.bed -b 1000 -a 1000 -out /project2/gilad/briana/threeprimeseq/data/ChipSeq/mnase_myPeaksNuclearIntronNompfilt.gz
plotHeatmap --sortRegions descend -m /project2/gilad/briana/threeprimeseq/data/ChipSeq/mnase_myPeaksNuclearIntronNompfilt.gz --refPointLabel "Called PAS" --plotTitle "MNASE at Nuclear specific PAS in Intron" --heatmapHeight 7 --colorMap YlGnBu -out /project2/gilad/briana/threeprimeseq/data/ChipSeq/mnase_myPeaksNuclearIntronNompfilt.png
Mean usage:
top 20% and bottom 20%. by mean usage
meanUsageTot=read.table("../data/PeaksUsed_noMP_5percCov/filtered_APApeaks_merged_allchrom_refseqGenes.GeneLocAnno.NoMP_sm_quant.Total_fixed.pheno.5percPeaks.txt", col.names = c("chr", "start", "end","gene", "strand", "name", "meanUsage")) %>% mutate(perc=ntile(meanUsage,n=100))
meanUsageTot_bot20=meanUsageTot %>% filter(perc <20) %>% dplyr::select(name)
meanUsageTot_top20=meanUsageTot %>% filter(perc >80)%>% dplyr::select(name)
Write out the peaks:
write.table(meanUsageTot_bot20, file="../data/PeaksUsed_noMP_5percCov/TotalPeaksBottom20Usage.txt", quote=F, row.names = F, col.names = F, sep="\t")
write.table(meanUsageTot_top20, file="../data/PeaksUsed_noMP_5percCov/TotalPeaksTop20Usage.txt", quote=F, row.names = F, col.names = F, sep="\t")
Copy to /project2/gilad/briana/threeprimeseq/data/PeakUsage_noMP_GeneLocAnno/
Subset PAS file:
subsetPAStottop20perc.py
top20=open("/project2/gilad/briana/threeprimeseq/data/PeakUsage_noMP_GeneLocAnno/TotalPeaksTop20Usage.txt", "r")
AllPas=open("/project2/gilad/briana/threeprimeseq/data/peaks4DT/APAPAS_5percCov_fixedStrand.bed", "r")
Top20PAS=open("/project2/gilad/briana/threeprimeseq/data/peaks4DT/APAPAS_5percCov_fixedStrand_top20inTotal.bed", "w")
def subsetPAS(use, outpas, PAS):
okPAS={}
for ln in use:
peak=ln.strip()
okPAS[peak]=""
for ln in PAS:
peaknum=ln.split()[3].split(":")[-1]
print
if peaknum in okPAS.keys():
outpas.write(ln)
outpas.close()
subsetPAS(top20, Top20PAS, AllPas)
subsetPAStotbottom20perc.py
bottom20=open("/project2/gilad/briana/threeprimeseq/data/PeakUsage_noMP_GeneLocAnno/TotalPeaksBottom20Usage.txt", "r")
AllPas=open("/project2/gilad/briana/threeprimeseq/data/peaks4DT/APAPAS_5percCov_fixedStrand.bed", "r")
Bottom20PAS=open("/project2/gilad/briana/threeprimeseq/data/peaks4DT/APAPAS_5percCov_fixedStrand_bottom20inTotal.bed", "w")
def subsetPAS(use, outpas, PAS):
okPAS={}
for ln in use:
peak=ln.strip()
okPAS[peak]=""
for ln in PAS:
peaknum=ln.split()[3].split(":")[-1]
print
if peaknum in okPAS.keys():
outpas.write(ln)
outpas.close()
subsetPAS(bottom20, Bottom20PAS, AllPas)
Deeptools plots for these:
MNASEmyPAStop20tot.sh
#!/bin/bash
#SBATCH --job-name=MNASEmyPAStop20tot
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=MNASEmyPAStop20tot.out
#SBATCH --error=MNASEmyPAStop20tot.err
#SBATCH --partition=bigmem2
#SBATCH --mem=100G
#SBATCH --mail-type=END
module load Anaconda3
source activate three-prime-env
computeMatrix reference-point -S /project2/gilad/briana/threeprimeseq/data/ChipSeq/ENCFF000VME.bigWig -R /project2/gilad/briana/threeprimeseq/data/peaks4DT/APAPAS_5percCov_fixedStrand_top20inTotal.bed -b 1000 -a 1000 -out /project2/gilad/briana/threeprimeseq/data/ChipSeq/mnase_myPeakstop20tot.gz
plotHeatmap --sortRegions descend -m /project2/gilad/briana/threeprimeseq/data/ChipSeq/mnase_myPeakstop20tot.gz --refPointLabel "Called PAS" --plotTitle "MNASE at Top 20% Total Usage" --heatmapHeight 7 --colorMap YlGnBu -out /project2/gilad/briana/threeprimeseq/data/ChipSeq/mnase_myPeakstop20tot.png
MNASEmyPASbottom20tot.sh
#!/bin/bash
#SBATCH --job-name=MNASEmyPASbottom20tot
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=MNASEmyPASbottom20tot.out
#SBATCH --error=MNASEmyPASbottom20tot.err
#SBATCH --partition=bigmem2
#SBATCH --mem=100G
#SBATCH --mail-type=END
module load Anaconda3
source activate three-prime-env
computeMatrix reference-point -S /project2/gilad/briana/threeprimeseq/data/ChipSeq/ENCFF000VME.bigWig -R /project2/gilad/briana/threeprimeseq/data/peaks4DT/APAPAS_5percCov_fixedStrand_bottom20inTotal.bed -b 1000 -a 1000 -out /project2/gilad/briana/threeprimeseq/data/ChipSeq/mnase_myPeaksbottom20tot.gz
plotHeatmap --sortRegions descend -m /project2/gilad/briana/threeprimeseq/data/ChipSeq/mnase_myPeaksbottom20tot.gz --refPointLabel "Called PAS" --plotTitle "MNASE at Bottom 20% Total Usage" --heatmapHeight 7 --colorMap YlGnBu -out /project2/gilad/briana/threeprimeseq/data/ChipSeq/mnase_myPeaksbottom20tot.png
Mean usage:
top 20% and bottom 20%. by mean usage
meanUsageNuc=read.table("../data/PeaksUsed_noMP_5percCov/filtered_APApeaks_merged_allchrom_refseqGenes.GeneLocAnno.NoMP_sm_quant.Nuclear_fixed.pheno.5percPeaks.txt", col.names = c("chr", "start", "end","gene", "strand", "name", "meanUsage")) %>% mutate(perc=ntile(meanUsage,n=100))
meanUsageNuc_bot20=meanUsageNuc %>% filter(perc <20) %>% dplyr::select(name)
meanUsageNuc_top20=meanUsageNuc %>% filter(perc >80)%>% dplyr::select(name)
Write out the peaks:
write.table(meanUsageNuc_bot20, file="../data/PeaksUsed_noMP_5percCov/NuclearPeaksBottom20Usage.txt", quote=F, row.names = F, col.names = F, sep="\t")
write.table(meanUsageNuc_top20, file="../data/PeaksUsed_noMP_5percCov/NuclearPeaksTop20Usage.txt", quote=F, row.names = F, col.names = F, sep="\t")
Copy to /project2/gilad/briana/threeprimeseq/data/PeakUsage_noMP_GeneLocAnno/
Subset PAS file:
subsetPASnuctop20perc.py
top20=open("/project2/gilad/briana/threeprimeseq/data/PeakUsage_noMP_GeneLocAnno/NuclearPeaksTop20Usage.txt", "r")
AllPas=open("/project2/gilad/briana/threeprimeseq/data/peaks4DT/APAPAS_5percCov_fixedStrand.bed", "r")
Top20PAS=open("/project2/gilad/briana/threeprimeseq/data/peaks4DT/APAPAS_5percCov_fixedStrand_top20inNuclear.bed", "w")
def subsetPAS(use, outpas, PAS):
okPAS={}
for ln in use:
peak=ln.strip()
okPAS[peak]=""
for ln in PAS:
peaknum=ln.split()[3].split(":")[-1]
print
if peaknum in okPAS.keys():
outpas.write(ln)
outpas.close()
subsetPAS(top20, Top20PAS, AllPas)
subsetPASnucbottom20perc.py
bottom20=open("/project2/gilad/briana/threeprimeseq/data/PeakUsage_noMP_GeneLocAnno/NuclearPeaksBottom20Usage.txt", "r")
AllPas=open("/project2/gilad/briana/threeprimeseq/data/peaks4DT/APAPAS_5percCov_fixedStrand.bed", "r")
Bottom20PAS=open("/project2/gilad/briana/threeprimeseq/data/peaks4DT/APAPAS_5percCov_fixedStrand_bottom20inNuclear.bed", "w")
def subsetPAS(use, outpas, PAS):
okPAS={}
for ln in use:
peak=ln.strip()
okPAS[peak]=""
for ln in PAS:
peaknum=ln.split()[3].split(":")[-1]
print
if peaknum in okPAS.keys():
outpas.write(ln)
outpas.close()
subsetPAS(bottom20, Bottom20PAS, AllPas)
Deeptools plots for these:
MNASEmyPAStop20nuc.sh
#!/bin/bash
#SBATCH --job-name=MNASEmyPAStop20nuc
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=MNASEmyPAStop20nuc.out
#SBATCH --error=MNASEmyPAStop20nuc.err
#SBATCH --partition=bigmem2
#SBATCH --mem=100G
#SBATCH --mail-type=END
module load Anaconda3
source activate three-prime-env
computeMatrix reference-point -S /project2/gilad/briana/threeprimeseq/data/ChipSeq/ENCFF000VME.bigWig -R /project2/gilad/briana/threeprimeseq/data/peaks4DT/APAPAS_5percCov_fixedStrand_top20inNuclear.bed -b 1000 -a 1000 -out /project2/gilad/briana/threeprimeseq/data/ChipSeq/mnase_myPeakstop20nuc.gz
plotHeatmap --sortRegions descend -m /project2/gilad/briana/threeprimeseq/data/ChipSeq/mnase_myPeakstop20nuc.gz --refPointLabel "Called PAS" --plotTitle "MNASE at Top 20% Nuclear Usage" --heatmapHeight 7 --colorMap YlGnBu -out /project2/gilad/briana/threeprimeseq/data/ChipSeq/mnase_myPeakstop20nuc.png
MNASEmyPASbottom20nuc.sh
#!/bin/bash
#SBATCH --job-name=MNASEmyPASbottom20nuc
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=MNASEmyPASbottom20nuc.out
#SBATCH --error=MNASEmyPASbottom20nuc.err
#SBATCH --partition=bigmem2
#SBATCH --mem=100G
#SBATCH --mail-type=END
module load Anaconda3
source activate three-prime-env
computeMatrix reference-point -S /project2/gilad/briana/threeprimeseq/data/ChipSeq/ENCFF000VME.bigWig -R /project2/gilad/briana/threeprimeseq/data/peaks4DT/APAPAS_5percCov_fixedStrand_bottom20inNuclear.bed -b 1000 -a 1000 -out /project2/gilad/briana/threeprimeseq/data/ChipSeq/mnase_myPeaksbottom20nuc.gz
plotHeatmap --sortRegions descend -m /project2/gilad/briana/threeprimeseq/data/ChipSeq/mnase_myPeaksbottom20nuc.gz --refPointLabel "Called PAS" --plotTitle "MNASE at Bottom 20% Nuclear Usage" --heatmapHeight 7 --colorMap YlGnBu -out /project2/gilad/briana/threeprimeseq/data/ChipSeq/mnase_myPeaksbottom20nuc.png
sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS 10.14.1
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] cowplot_0.9.4 data.table_1.12.0 workflowr_1.2.0
[4] forcats_0.4.0 stringr_1.4.0 dplyr_0.8.0.1
[7] purrr_0.3.1 readr_1.3.1 tidyr_0.8.3
[10] tibble_2.0.1 ggplot2_3.1.0 tidyverse_1.2.1
loaded via a namespace (and not attached):
[1] Rcpp_1.0.0 cellranger_1.1.0 plyr_1.8.4 pillar_1.3.1
[5] compiler_3.5.1 git2r_0.24.0 tools_3.5.1 digest_0.6.18
[9] lubridate_1.7.4 jsonlite_1.6 evaluate_0.13 nlme_3.1-137
[13] gtable_0.2.0 lattice_0.20-38 pkgconfig_2.0.2 rlang_0.3.1
[17] cli_1.0.1 rstudioapi_0.9.0 yaml_2.2.0 haven_2.1.0
[21] xfun_0.5 withr_2.1.2 xml2_1.2.0 httr_1.4.0
[25] knitr_1.21 hms_0.4.2 generics_0.0.2 fs_1.2.6
[29] rprojroot_1.3-2 grid_3.5.1 tidyselect_0.2.5 glue_1.3.0
[33] R6_2.4.0 readxl_1.3.0 rmarkdown_1.11 modelr_0.1.4
[37] magrittr_1.5 whisker_0.3-2 backports_1.1.3 scales_1.0.0
[41] htmltools_0.3.6 rvest_0.3.2 assertthat_0.2.0 colorspace_1.4-0
[45] stringi_1.3.1 lazyeval_0.2.1 munsell_0.5.0 broom_0.5.1
[49] crayon_1.3.4