Last updated: 2018-07-30
workflowr checks: (Click a bullet for more information)Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
set.seed(12345)
The command set.seed(12345)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: output/.DS_Store
Untracked files:
Untracked: data/18486.genecov.txt
Untracked: data/APApeaksYL.total.inbrain.bed
Untracked: data/Totalpeaks_filtered_clean.bed
Untracked: data/YL-SP-18486-T_S9_R1_001-genecov.txt
Untracked: data/bedgraph_peaks/
Untracked: data/bin200.5.T.nuccov.bed
Untracked: data/bin200.Anuccov.bed
Untracked: data/bin200.nuccov.bed
Untracked: data/clean_peaks/
Untracked: data/combined_reads_mapped_three_prime_seq.csv
Untracked: data/gene_cov/
Untracked: data/leafcutter/
Untracked: data/nuc6up/
Untracked: data/reads_mapped_three_prime_seq.csv
Untracked: data/smash.cov.results.bed
Untracked: data/smash.cov.results.csv
Untracked: data/smash.cov.results.txt
Untracked: data/smash_testregion/
Untracked: data/ssFC200.cov.bed
Untracked: output/picard/
Untracked: output/plots/
Untracked: output/qual.fig2.pdf
Unstaged changes:
Modified: analysis/cleanupdtseq.internalpriming.Rmd
Modified: analysis/dif.iso.usage.leafcutter.Rmd
Modified: analysis/explore.filters.Rmd
Modified: analysis/test.max2.Rmd
Modified: code/Snakefile
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes. File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 422a428 | Briana Mittleman | 2018-07-30 | add peak cove pipeline and combined lane qc |
I need to create a processing pipeline that I can run each time I get more individuals that will do the following:
combine all total and nuclear libraries (as a bigwig/genome coverage)
call peaks with Yang’s script
filter peaks with Yang’s script
clean peaks
run feature counts on these peaks for all fo the individuals
I can do this step in my snakefile. First, I added the following to my environemnt.
I want to create bedgraph for each file. I will add a rule to my snakefile that does this and puts them in the bedgraph directory.
#add to directory
dir_bedgraph= dir_data + "bedgraph/"
#add to rule_all
expand(dir_bedgraph + "{samples}.bg", samples=samples)
#rule
rule bedgraph:
input:
bam = dir_sort + "{samples}-sort.bam"
output: dir_bedgraph + "{samples}.bg"
shell: "bedtools genomecov -ibam {input.bam} -bg -5 > {output}"
I want to add more memory for this rule in the cluster.json
"bedgraph" :
{
"mem": 16000
}
I will use the bedgraphtobigwig tool.
#add to directory
dir_bigwig= dir_data + "bigwig/"
dir_sortbg= dir_data + "bedgraph_sort/"
#add to rule_all
expand(dir_sortbg + "{samples}.sort.bg", samples=samples)
expand(dir_bigwig + "{samples}.bw", samples=samples)
rule sort_bg:
input: dir_bedgraph + "{samples}.bg"
output: dir_sortbg + "{samples}.sort.bg"
shell: "sort -k1,1 -k2,2n {input} > {output}"
rule bg_to_bw:
input:
bg=dir_sortbg + "{samples}.sort.bg"
len= chrom_length
output: dir_bigwig + "{samples}.bw"
shell: "bedGraphToBigWig {input.bg} {input.len} {output}""
This next step will take all of the files in the bigwig directory and merge them. To do this I will create a script that creates a list of all of the files then uses this list in the merge script.
mergeBW.sh
#!/bin/bash
#SBATCH --job-name=mergeBW
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=mergeBW.out
#SBATCH --error=mergeBW.err
#SBATCH --partition=broadwl
#SBATCH --mem=40G
#SBATCH --mail-type=END
module load Anaconda3
source activate three-prime-env
ls -d -1 $PWD/* /project2/gilad/briana/threeprimeseq/data/bigwig | tail -n +2 > /project2/gilad/briana/threeprimeseq/data/list_bw/list_of_bigwig.txt
bigWigMerge -inList /project2/gilad/briana/threeprimeseq/data/list_bw/list_of_bigwig.txt /project2/gilad/briana/threeprimeseq/data/mergedBW/merged_combined_YL-SP-threeprimeseq.bg
The result of this script will be a merged bedgraph of all of the files.
sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS Sierra 10.12.6
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
loaded via a namespace (and not attached):
[1] workflowr_1.1.1 Rcpp_0.12.18 digest_0.6.15
[4] rprojroot_1.3-2 R.methodsS3_1.7.1 backports_1.1.2
[7] git2r_0.23.0 magrittr_1.5 evaluate_0.11
[10] stringi_1.2.4 whisker_0.3-2 R.oo_1.22.0
[13] R.utils_2.6.0 rmarkdown_1.10 tools_3.5.1
[16] stringr_1.3.1 yaml_2.1.19 compiler_3.5.1
[19] htmltools_0.3.6 knitr_1.20
This reproducible R Markdown analysis was created with workflowr 1.1.1