Last updated: 2018-11-12

workflowr checks: (Click a bullet for more information)
  • R Markdown file: up-to-date

    Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

  • Environment: empty

    Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

  • Seed: set.seed(12345)

    The command set.seed(12345) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

  • Session information: recorded

    Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

  • Repository version: 89b780f

    Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

    Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
    
    Ignored files:
        Ignored:    .DS_Store
        Ignored:    .Rhistory
        Ignored:    .Rproj.user/
        Ignored:    data/.DS_Store
        Ignored:    output/.DS_Store
    
    Untracked files:
        Untracked:  KalistoAbundance18486.txt
        Untracked:  analysis/ncbiRefSeq_sm.sort.mRNA.bed
        Untracked:  analysis/snake.config.notes.Rmd
        Untracked:  analysis/verifyBAM.Rmd
        Untracked:  data/18486.genecov.txt
        Untracked:  data/APApeaksYL.total.inbrain.bed
        Untracked:  data/ChromHmmOverlap/
        Untracked:  data/GM12878.chromHMM.bed
        Untracked:  data/GM12878.chromHMM.txt
        Untracked:  data/NuclearApaQTLs.txt
        Untracked:  data/PeaksUsed/
        Untracked:  data/RNAkalisto/
        Untracked:  data/TotalApaQTLs.txt
        Untracked:  data/Totalpeaks_filtered_clean.bed
        Untracked:  data/YL-SP-18486-T-combined-genecov.txt
        Untracked:  data/YL-SP-18486-T_S9_R1_001-genecov.txt
        Untracked:  data/apaExamp/
        Untracked:  data/bedgraph_peaks/
        Untracked:  data/bin200.5.T.nuccov.bed
        Untracked:  data/bin200.Anuccov.bed
        Untracked:  data/bin200.nuccov.bed
        Untracked:  data/clean_peaks/
        Untracked:  data/comb_map_stats.csv
        Untracked:  data/comb_map_stats.xlsx
        Untracked:  data/comb_map_stats_39ind.csv
        Untracked:  data/combined_reads_mapped_three_prime_seq.csv
        Untracked:  data/diff_iso_trans/
        Untracked:  data/ensemble_to_genename.txt
        Untracked:  data/example_gene_peakQuant/
        Untracked:  data/filtered_APApeaks_merged_allchrom_refseqTrans.closest2End.bed
        Untracked:  data/filtered_APApeaks_merged_allchrom_refseqTrans.closest2End.noties.bed
        Untracked:  data/first50lines_closest.txt
        Untracked:  data/gencov.test.csv
        Untracked:  data/gencov.test.txt
        Untracked:  data/gencov_zero.test.csv
        Untracked:  data/gencov_zero.test.txt
        Untracked:  data/gene_cov/
        Untracked:  data/joined
        Untracked:  data/leafcutter/
        Untracked:  data/merged_combined_YL-SP-threeprimeseq.bg
        Untracked:  data/mol_overlap/
        Untracked:  data/mol_pheno/
        Untracked:  data/nom_QTL/
        Untracked:  data/nom_QTL_opp/
        Untracked:  data/nom_QTL_trans/
        Untracked:  data/nuc6up/
        Untracked:  data/other_qtls/
        Untracked:  data/peakPerRefSeqGene/
        Untracked:  data/perm_QTL/
        Untracked:  data/perm_QTL_opp/
        Untracked:  data/perm_QTL_trans/
        Untracked:  data/reads_mapped_three_prime_seq.csv
        Untracked:  data/smash.cov.results.bed
        Untracked:  data/smash.cov.results.csv
        Untracked:  data/smash.cov.results.txt
        Untracked:  data/smash_testregion/
        Untracked:  data/ssFC200.cov.bed
        Untracked:  data/temp.file1
        Untracked:  data/temp.file2
        Untracked:  data/temp.gencov.test.txt
        Untracked:  data/temp.gencov_zero.test.txt
        Untracked:  output/picard/
        Untracked:  output/plots/
        Untracked:  output/qual.fig2.pdf
    
    Unstaged changes:
        Modified:   analysis/28ind.peak.explore.Rmd
        Modified:   analysis/39indQC.Rmd
        Modified:   analysis/chromHmm_enrichment.Rmd
        Modified:   analysis/cleanupdtseq.internalpriming.Rmd
        Modified:   analysis/coloc_apaQTLs_protQTLs.Rmd
        Modified:   analysis/dif.iso.usage.leafcutter.Rmd
        Modified:   analysis/diff_iso_pipeline.Rmd
        Modified:   analysis/explore.filters.Rmd
        Modified:   analysis/flash2mash.Rmd
        Modified:   analysis/overlapMolQTL.Rmd
        Modified:   analysis/overlap_qtls.Rmd
        Modified:   analysis/peakOverlap_oppstrand.Rmd
        Modified:   analysis/pheno.leaf.comb.Rmd
        Modified:   analysis/swarmPlots_QTLs.Rmd
        Modified:   analysis/test.max2.Rmd
        Modified:   code/Snakefile
    
    
    Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Expand here to see past versions:
    File Version Author Date Message
    Rmd 89b780f Briana Mittleman 2018-11-12 add analysis of hits
    html 7462a2d Briana Mittleman 2018-11-09 Build site.
    Rmd 489bf91 Briana Mittleman 2018-11-09 code for plink r2
    html 0428c8c Briana Mittleman 2018-10-29 Build site.
    Rmd 42d0e3d Briana Mittleman 2018-10-29 add gwas overlap to index


library(workflowr)
This is workflowr version 1.1.1
Run ?workflowr for help getting started
library(tidyverse)
── Attaching packages ─────────────────────────────────────────────────────────────────────────── tidyverse 1.2.1 ──
✔ ggplot2 3.0.0     ✔ purrr   0.2.5
✔ tibble  1.4.2     ✔ dplyr   0.7.6
✔ tidyr   0.8.1     ✔ stringr 1.3.1
✔ readr   1.1.1     ✔ forcats 0.3.0
── Conflicts ────────────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
library(cowplot)

Attaching package: 'cowplot'
The following object is masked from 'package:ggplot2':

    ggsave

In this analysis I want to see if APAqtls show up in the GWAS catelog. I then want to see if they explain different signal then overlappnig the eQTLs.

I can use my significant snp bed file from /project2/gilad/briana/threeprimeseq/data/perm_APAqtl_trans/sigSnps to overlap with the GWAS catelog. First I can look at direct location then I will use an LD cutoff to colocalize.

  • /project2/gilad/briana/threeprimeseq/data/perm_APAqtl_trans/sigSnps/ApaQTLsignificantSnps_10percFDR_Nuclear.sort.bed
  • /project2/gilad/briana/threeprimeseq/data/perm_APAqtl_trans/sigSnps/ApaQTLsignificantSnps_10percFDR_Total.sort.bed

The downloaded GWAS catalog from the UCSD table browser.

  • /project2/gilad/briana/genome_anotation_data/hg19GwasCatalog.txt

I will make this into a bed format to use with pybedtools.

-Chrom -start -end -name -score

fin=open(""/project2/gilad/briana/genome_anotation_data/hg19GwasCatalog.txt", "r")
fout=open("/project2/gilad/briana/genome_anotation_data/hg19GwasCatalog.bed","w")

for num, ln in enumerate(fin):
  if num > 0: 
    line=ln.split("\t")
    id_list=[line[4],line[5], line[14]]
    start=int(line[2])
    end=int(line[3])
    id=":".join(id_list)
    chr=line[1][3:]
    pval=line[16]
    fout.write("%s\t%d\t%d\t%s\t%s\n"%(chr,start, end, id, pval)
fout.close() 
    

Pybedtools to intersect my snps with catelog /project2/gilad/briana/threeprimeseq/data/GWAS_overlap

output dir:

import pybedtools
gwas=pybedtools.BedTool("/project2/gilad/briana/genome_anotation_data/hg19GwasCatalog.sort.bed")
nuc=pybedtools.BedTool("/project2/gilad/briana/threeprimeseq/data/perm_APAqtl_trans/sigSnps/ApaQTLsignificantSnps_10percFDR_Nuclear.sort.bed")
tot=pybedtools.BedTool("/project2/gilad/briana/threeprimeseq/data/perm_APAqtl_trans/sigSnps/ApaQTLsignificantSnps_10percFDR_Total.sort.bed") 

nucOverGWAS=nuc.intersect(gwas, wa=True,wb=True)
totOverGWAS=tot.intersect(gwas,wa=True, wb=True)

#this only results in one overlap:  
nucOverGWAS.saveas("/project2/gilad/briana/threeprimeseq/data/GWAS_overlap/nucFDR10overlapGWAS.txt")

Problem: I see this snp but it is assoicated with a different gene. I need to think about gene and snp overlap.

I can see if this snp is an eqtl.

16:30482494

eqtl=read.table(file = "../data/other_qtls/fastqtl_qqnorm_RNAseq_phase2.fixed.perm.out")
eqtl_g= read.table("../data/other_qtls/fastqtl_qqnorm_RNAseqGeuvadis.fixed.perm.out")

This snp is not in either of these files. I will check for them in the nominal results.

grep 16:30482494   /project2/gilad/briana/threeprimeseq/data/molecular_QTLs/nom/fastqtl_qqnorm_RNAseq_phase2.fixed.nominal.out


grep 16:30482494   /project2/gilad/briana/threeprimeseq/data/molecular_QTLs/nom/fastqtl_qqnorm_RNAseqGeuvadis.fixed.nominal.out

LD structure

https://vcftools.github.io/man_latest.html –vcf (vcf file) –geno-r2 –out (prefix) vcf tools is on midway 2 “module load vcftools”

I can use the snp files I created for the chromHMM analysis.

  • /project2/gilad/briana/threeprimeseq/data/perm_APAqtl_trans/sigSnps/ApaQTLsignificantSnps_10percFDR_Total.sort.bed
  • /project2/gilad/briana/threeprimeseq/data/perm_APAqtl_trans/sigSnp/ApaQTLsignificantSnps_10percFDR_Nuclear.sort.bed

I can use awk to get the first and third column.

awk '{print $1 ":" $3}' /project2/gilad/briana/threeprimeseq/data/perm_APAqtl_trans/sigSnps/ApaQTLsignificantSnps_10percFDR_Nuclear.sort.bed > /project2/gilad/briana/threeprimeseq/data/GWAS_overlap/ApaQTLsigSNPpos_Nuclear.txt

awk '{print $1":"$3}' /project2/gilad/briana/threeprimeseq/data/perm_APAqtl_trans/sigSnps/ApaQTLsignificantSnps_10percFDR_Total.sort.bed > /project2/gilad/briana/threeprimeseq/data/GWAS_overlap/ApaQTLsigSNPpos_Total.txt

testLD_vcftools_totQTL.sh


#!/bin/bash

#SBATCH --job-name=testLD_vcftools_totQTL.sh
#SBATCH --account=pi-yangili1
#SBATCH --time=36:00:00
#SBATCH --output=testLD_vcftools_totQTL.out
#SBATCH --error=testLD_vcftools_totQTL.err
#SBATCH --partition=broadwl
#SBATCH --mem=16G
#SBATCH --mail-type=END

module load vcftools

vcftools --gzvcf chr1.dose.vcf.gz  --snps  /project2/gilad/briana/threeprimeseq/data/GWAS_overlap/ApaQTLsigSNPpos_Total.txt --out /project2/gilad/briana/YRI_geno_hg19/chr1.totQTL.LD --geno-r2 

/project2/gilad/briana/threeprimeseq/data/GWAS_overlap/TotalApaQTL_LD

/project2/gilad/briana/threeprimeseq/data/GWAS_overlap/NuclearApaQTL_LD

Now run this for all chr in both fractions.

LD_vcftools.sh

#!/bin/bash

#SBATCH --job-name=LD_vcftools.sh
#SBATCH --account=pi-yangili1
#SBATCH --time=36:00:00
#SBATCH --output=LD_vcftools.out
#SBATCH --error=rLD_vcftools.err
#SBATCH --partition=broadwl
#SBATCH --mem=30G
#SBATCH --mail-type=END

module load vcftools

for i  in {1..22};
do
vcftools --gzvcf /project2/gilad/briana/YRI_geno_hg19/chr${i}.dose.vcf.gz  --snps  /project2/gilad/briana/threeprimeseq/data/GWAS_overlap/ApaQTLsigSNPpos_Total.txt --out /project2/gilad/briana/threeprimeseq/data/GWAS_overlap/TotalApaQTL_LD/chr${i}.totQTL.LD --geno-r2 --min-r2 .8
done


for i  in {1..22};
do
vcftools --gzvcf /project2/gilad/briana/YRI_geno_hg19/chr${i}.dose.vcf.gz  --snps  /project2/gilad/briana/threeprimeseq/data/GWAS_overlap/ApaQTLsigSNPpos_Nuclear.txt --out /project2/gilad/briana/threeprimeseq/data/GWAS_overlap/NuclearApaQTL_LD/chr${i}.nucQTL.LD --geno-r2 --min-r2 .8
done

This doesnt give very many more snps. Let me try this with Tony’s vcf files from the larger panel of LCLs.

Try it with the –hap-r2 argument.

LD_vcftools.hap.sh

#!/bin/bash

#SBATCH --job-name=LD_vcftools.hap.sh
#SBATCH --account=pi-yangili1
#SBATCH --time=36:00:00
#SBATCH --output=LD_vcftools.hap.out
#SBATCH --error=rLD_vcftools.hap.err
#SBATCH --partition=broadwl
#SBATCH --mem=30G
#SBATCH --mail-type=END

module load vcftools

for i  in {1..22};
do
vcftools --gzvcf /project2/gilad/briana/YRI_geno_hg19/chr${i}.dose.vcf.gz  --snps  /project2/gilad/briana/threeprimeseq/data/GWAS_overlap/ApaQTLsigSNPpos_Total.txt --out /project2/gilad/briana/threeprimeseq/data/GWAS_overlap/TotalApaQTL_LD/chr${i}.totQTL.hap.LD --hap-r2--min-r2 .8
done


for i  in {1..22};
do
vcftools --gzvcf /project2/gilad/briana/YRI_geno_hg19/chr${i}.dose.vcf.gz  --snps  /project2/gilad/briana/threeprimeseq/data/GWAS_overlap/ApaQTLsigSNPpos_Nuclear.txt --out /project2/gilad/briana/threeprimeseq/data/GWAS_overlap/NuclearApaQTL_LD/chr${i}.nucQTL.hap.LD --hap-r2 --min-r2 .8
done

still not a lot of snps.

testLDGeu_vcftools_totQTL.sh


#!/bin/bash

#SBATCH --job-name=testLDGeu_vcftools_totQTL.sh
#SBATCH --account=pi-yangili1
#SBATCH --time=36:00:00
#SBATCH --output=testLDGeu_vcftools_totQTL.out
#SBATCH --error=testLDGeu_vcftools_totQTL.err
#SBATCH --partition=broadwl
#SBATCH --mem=16G
#SBATCH --mail-type=END

module load vcftools

vcftools --gzvcf /project2/yangili1/LCL/genotypesYRI.gen.txt.gz   --snps  /project2/gilad/briana/threeprimeseq/data/GWAS_overlap/ApaQTLsigSNPpos_Total.txt --out /project2/gilad/briana/threeprimeseq/data/GWAS_overlap/geuvadis.totQTL.LD --geno-r2 

Error: Insufficient sites remained after filtering

vcf2Plink.sh

#!/bin/bash

#SBATCH --job-name=vcf2Plink
#SBATCH --account=pi-yangili1
#SBATCH --time=36:00:00
#SBATCH --output=vcf2Plink.out
#SBATCH --error=vcf2Plink.err
#SBATCH --partition=broadwl
#SBATCH --mem=30G
#SBATCH --mail-type=END

module load vcftools

for i  in {1..22};
do
vcftools --gzvcf /project2/gilad/briana/YRI_geno_hg19/chr${i}.dose.vcf.gz --plink --chr ${i} --out /project2/gilad/briana/YRI_geno_hg19/plinkYRIgeno_chr${i}
done

Try with plink:
I will use the ped and map files: –ped /project2/gilad/briana/YRI_geno_hg19/plinkYRIgeno_chr$i.ped –map /project2/gilad/briana/YRI_geno_hg19/plinkYRIgeno_chri.map

–ld-snp-list /project2/gilad/briana/threeprimeseq/data/GWAS_overlap/ApaQTLsigSNPpos_Total.txt

–r2

–ld-window-r2 0.20.8 testPlink_r2.sh

#!/bin/bash

#SBATCH --job-name=testPlink_r2
#SBATCH --account=pi-yangili1
#SBATCH --time=36:00:00
#SBATCH --output=testPlink_r2.out
#SBATCH --error=testPlink_r2.err
#SBATCH --partition=broadwl
#SBATCH --mem=30G
#SBATCH --mail-type=END

module load plink

plink --ped /project2/gilad/briana/YRI_geno_hg19/plinkYRIgeno_chr22.ped  --map /project2/gilad/briana/YRI_geno_hg19/plinkYRIgeno_chr22.map --r2  --ld-window-r2 0.8 --out /project2/gilad/briana/threeprimeseq/data/GWAS_overlap/plinkYRI_LDchr22

This gives me 77,000 pairs. I will run this on all of the chromosomes then subset by snps i have QTLs for.

RunPlink_r2.sh

#!/bin/bash

#SBATCH --job-name=RunPlink_r2
#SBATCH --account=pi-yangili1
#SBATCH --time=36:00:00
#SBATCH --output=RunPlink_r2.out
#SBATCH --error=RunPlink_r2.err
#SBATCH --partition=broadwl
#SBATCH --mem=30G
#SBATCH --mail-type=END

module load plink


for i  in {1..22};
do
plink --ped /project2/gilad/briana/YRI_geno_hg19/plinkYRIgeno_chr${i}.ped  --map /project2/gilad/briana/YRI_geno_hg19/plinkYRIgeno_chr${i}.map --r2  --ld-window-r2 0.8 --out /project2/gilad/briana/threeprimeseq/data/GWAS_overlap/plinkYRI_LDchr${i}
done

I can now subset these files for snps in the /project2/gilad/briana/threeprimeseq/data/GWAS_overlap/ApaQTLsigSNPpos_Total.txt and /project2/gilad/briana/threeprimeseq/data/GWAS_overlap/ApaQTLsigSNPpos_Nuclear.txt files using a python script.

This script will take a fraction and chromosome.

subset_plink4QTLs.py


    
def main(genFile, qtlFile, outFile):
  #convert snp file to a list: 
  def file_to_list(file):
    snp_list=[]
    for ln in file:
      snp=ln.strip()
      snp_list.append(snp)
    return(snp_list)

  gen=open(genFile,"r")
  fout=open(outFile, "w")
  qtls=open(qtlFile, "r")
  qtl_list=file_to_list(qtls)
  for ln in gen:
      snp=ln.split()[2]
      if snp in qtl_list:
          fout.write(ln)
  fout.close()
    

if __name__ == "__main__":
    import sys
    chrom=sys.argv[1]
    fraction=sys.argv[2]
    genFile = "/project2/gilad/briana/threeprimeseq/data/GWAS_overlap/plinkYRI_LDchr%s.ld"%(chrom)
    outFile= "/project2/gilad/briana/threeprimeseq/data/GWAS_overlap/%sApaQTL_LD/chr%s.%sQTL.LD.geno.ld"%(fraction,chrom,fraction)
    qtlFile= "/project2/gilad/briana/threeprimeseq/data/GWAS_overlap/ApaQTLsigSNPpos_%s.txt"%(fraction)
    main(genFile, qtlFile, outFile) 
    
    
    

Run this for all chr in a bash script:

run_subset_plink4QTLs.sh

#!/bin/bash

#SBATCH --job-name=run_subset_plink4QTLs
#SBATCH --account=pi-yangili1
#SBATCH --time=36:00:00
#SBATCH --output=run_subset_plink4QTLs.out
#SBATCH --error=run_subset_plink4QTLs.err
#SBATCH --partition=broadwl
#SBATCH --mem=30G
#SBATCH --mail-type=END


module load Anaconda3
source activate three-prime-env


for i  in {1..22};
do
python subset_plink4QTLs.py ${i} "Total"
done

for i  in {1..22};
do
python subset_plink4QTLs.py ${i} "Nuclear"
done

This results in 385 more snps for the nuclear QTLs and 54 more for the total.

I want to try this method on the bigger panel from Tonys work.

vcf2Plink_geu.sh

#!/bin/bash

#SBATCH --job-name=vcf2Plink_geu
#SBATCH --account=pi-yangili1
#SBATCH --time=36:00:00
#SBATCH --output=vcf2Plink_geu2.out
#SBATCH --error=vcf2Plink_geu2.err
#SBATCH --partition=broadwl
#SBATCH --mem=30G
#SBATCH --mail-type=END

module load vcftools

for i  in {1..22};
do
vcftools --gzvcf /project2/yangili1/LCL/geuvadis_genotypes/GEUVADIS.chr${i}.hg19_MAF5AC.vcf.gz --plink --chr ${i} --out /project2/gilad/briana/YRI_geno_hg19/geu_plinkYRIgeno_chr${i}
done

RunPlink_Geu_r2.sh

#!/bin/bash

#SBATCH --job-name=RunPlink_geu_r2
#SBATCH --account=pi-yangili1
#SBATCH --time=36:00:00
#SBATCH --output=RunPlink_geu_r2.out
#SBATCH --error=RunPlink_geu_r2.err
#SBATCH --partition=broadwl
#SBATCH --mem=30G
#SBATCH --mail-type=END

module load plink


for i  in {1..22};
do
plink --ped /project2/gilad/briana/YRI_geno_hg19/geu_plinkYRIgeno_chr${i}.ped  --map /project2/gilad/briana/YRI_geno_hg19/geu_plinkYRIgeno_chr${i}.map --r2  --ld-window-r2 0.8 --out /project2/gilad/briana/threeprimeseq/data/GWAS_overlap/geu_plinkYRI_LDchr${i}
done

QTLs2GeuSnps.py

tot_in=open("/project2/gilad/briana/threeprimeseq/data/GWAS_overlap/ApaQTLsigSNPpos_Total.txt", "r")  
nuc_in=open("/project2/gilad/briana/threeprimeseq/data/GWAS_overlap/ApaQTLsigSNPpos_Nuclear.txt", "r")

tot_out=open("/project2/gilad/briana/threeprimeseq/data/GWAS_overlap/ApaQTLsigSNPpos_Total_GEU.txt", "w") 
nuc_out=open("/project2/gilad/briana/threeprimeseq/data/GWAS_overlap/ApaQTLsigSNPpos_Nuclear_GEU.txt", "w") 


def fix_file(fin, fout):
  for ln in fin:
    chrom, pos = ln.split(":")
    fout.write("snp_%s_%s/n"%(chrom,pos))
  fout.close()
  

fix_file(tot_in, tot_out)
fix_file(nuc_in, nuc_out)

run_QTLs2GeuSnps.sh

#!/bin/bash

#SBATCH --job-name=run_QTLs2GeuSnps
#SBATCH --account=pi-yangili1
#SBATCH --time=36:00:00
#SBATCH --output=run_QTLs2GeuSnps.out
#SBATCH --error=run_QTLs2GeuSnps.err
#SBATCH --partition=broadwl
#SBATCH --mem=30G
#SBATCH --mail-type=END


module load Anaconda3
source activate three-prime-env


python QTLs2GeuSnps.py

Update the python selection script for geu results.
subset_plink4QTLs_geu.py


    
def main(genFile, qtlFile, outFile):
  #convert snp file to a list: 
  def file_to_list(file):
    snp_list=[]
    for ln in file:
      snp=ln.strip()
      snp_list.append(snp)
    return(snp_list)

  gen=open(genFile,"r")
  fout=open(outFile, "w")
  qtls=open(qtlFile, "r")
  qtl_list=file_to_list(qtls)
  for ln in gen:
      snp=ln.split()[2]
      if snp in qtl_list:
          fout.write(ln)
  fout.close()
    

if __name__ == "__main__":
    import sys
    chrom=sys.argv[1]
    fraction=sys.argv[2]
    genFile = "/project2/gilad/briana/threeprimeseq/data/GWAS_overlap/geu_plinkYRI_LDchr%s.ld"%(chrom)
    outFile= "/project2/gilad/briana/threeprimeseq/data/GWAS_overlap/%sApaQTL_LD_geu/chr%s.%sQTL.LD.geno.ld"%(fraction,chrom,fraction)
    qtlFile= "/project2/gilad/briana/threeprimeseq/data/GWAS_overlap/ApaQTLsigSNPpos_%s_GEU.txt"%(fraction)
    main(genFile, qtlFile, outFile) 
    
    
    

run_subset_plink4QTLs_geu.sh

#!/bin/bash

#SBATCH --job-name=run_subset_plink4QTLs_geu
#SBATCH --account=pi-yangili1
#SBATCH --time=36:00:00
#SBATCH --output=run_subset_plink4QTLs_geu.out
#SBATCH --error=run_subset_plink4QTLs_geu.err
#SBATCH --partition=broadwl
#SBATCH --mem=30G
#SBATCH --mail-type=END


module load Anaconda3
source activate three-prime-env


for i  in {1..22};
do
python subset_plink4QTLs_geu.py ${i} "Total"
done

for i  in {1..22};
do
python subset_plink4QTLs_geu.py ${i} "Nuclear"
done

This add 166 for total and 1074 for nuclear. This is better. I will use these for the GWAS overlap.

I want to make a sorted bed file with all of these snps (total and nuclear together) to overlap with the gwas catelog. I will have the snp name include if it was a from the total or nuclear. I can do all of this in python then sort the bed file after.

The LD files include indels. I will not include there. There are 8 in the total file and 108 in nuclear, I can remove these with the following.

grep -v indel /project2/gilad/briana/threeprimeseq/data/GWAS_overlap/NuclearApaQTL_LD_geu/allChr.NuclearQTL.LD.gene.ld > /project2/gilad/briana/threeprimeseq/data/GWAS_overlap/NuclearApaQTL_LD_geu/allChr.NuclearQTL.LD.gene.ld_noIndel


grep -v indel /project2/gilad/briana/threeprimeseq/data/GWAS_overlap/TotalApaQTL_LD_geu/allChr.TotalQTL.GD.geno.ld > /project2/gilad/briana/threeprimeseq/data/GWAS_overlap/TotalApaQTL_LD_geu/allChr.TotalQTL.GD.geno.ld_noIndel
  • /project2/gilad/briana/threeprimeseq/data/GWAS_overlap/ApaQTLsigSNPpos_Total_GEU.txt
  • /project2/gilad/briana/threeprimeseq/data/GWAS_overlap/ApaQTLsigSNPpos_Nuclear_GEU.txt
  • /project2/gilad/briana/threeprimeseq/data/GWAS_overlap/NuclearApaQTL_LD_geu/allChr.NuclearQTL.LD.gene.ld_noIndel
  • /project2/gilad/briana/threeprimeseq/data/GWAS_overlap/TotalApaQTL_LD_geu/allChr.TotalQTL.GD.geno.ld_noIndel

makeAlloverlapbed.py


#load files:  

QTL_total=open("/project2/gilad/briana/threeprimeseq/data/GWAS_overlap/ApaQTLsigSNPpos_Total_GEU.txt", "r")
QTL_nuclear=open("/project2/gilad/briana/threeprimeseq/data/GWAS_overlap/ApaQTLsigSNPpos_Nuclear_GEU.txt", "r")
LD_total=open("/project2/gilad/briana/threeprimeseq/data/GWAS_overlap/TotalApaQTL_LD_geu/allChr.TotalQTL.GD.geno.ld_noIndel", "r")
LD_nuclear=open("/project2/gilad/briana/threeprimeseq/data/GWAS_overlap/NuclearApaQTL_LD_geu/allChr.NuclearQTL.LD.gene.ld_noIndel", "r")
outFile= open("/project2/gilad/briana/threeprimeseq/data/GWAS_overlap/AllOverlapSnps.bed", "w")

#function for qtl to bed format
def qtl2bed(fqtl, fraction, fout=outFile):
    for ln in fqtl:
        snp, chrom, pos = ln.split("_")
        start=int(pos)-1
        end= int(pos)
        fout.write("%s\t%d\t%d\tQTL_%s\n"%(chrom, start, end,fraction))

#function for ld to bed format 
def ld2bed(fLD, fraction, fout=outFile):
    for ln in fLD:
        snpID=ln.split()[5]
        snp, chrom, pos= snpID.split("_")
        start=int(pos)-1
        end=int(pos)
        fout.write("%s\t%d\t%d\tLD_%s\n"%(chrom, start, end,fraction))


#I will run each of these for both fractions to get all of the snps in the out file. 


qtl2bed(QTL_nuclear, "Nuclear")
qtl2bed(QTL_total, "Total")
ld2bed(LD_nuclear, "Nuclear")
ld2bed(LD_total, "Total")


outFile.close()

Sort it:

sort -k1,1 -k2,2n /project2/gilad/briana/threeprimeseq/data/GWAS_overlap/AllOverlapSnps.bed > /project2/gilad/briana/threeprimeseq/data/GWAS_overlap/AllOverlapSnps_sort.bed

I can now use py bedtools to overlap this.

overlapSNPsGWAS.py

This will take in any lsit of snps and overlap them with the gwas catelog bed file.



def main(infile, outfile):
    gwas_file=open("/project2/gilad/briana/genome_anotation_data/hg19GwasCatalog.sort.bed","r")
    gwas=pybedtools.BedTool(gwas_file)
    snps_file=open(infile, "r")
    snps=pybedtools.BedTool(snps_file)
    snpOverGWAS=snps.intersect(gwas, wa=True,wb=True)
    snpOverGWAS.saveas(outfile)

if __name__ == "__main__":
    import sys
    import pybedtools
    infile=sys.argv[1]
    outfile=sys.argv[2]
    main(infile, outfile) 

Call this in bash so i can load the environment

run_overlapSNPsGWAS.sh

#!/bin/bash

#SBATCH --job-name=run_overlapSNPsGWAS
#SBATCH --account=pi-yangili1
#SBATCH --time=5:00:00
#SBATCH --output=run_overlapSNPsGWAS.out
#SBATCH --error=run_overlapSNPsGWAS.err
#SBATCH --partition=broadwl
#SBATCH --mem=10G
#SBATCH --mail-type=END


module load Anaconda3
source activate three-prime-env

python overlapSNPsGWAS.py  "/project2/gilad/briana/threeprimeseq/data/GWAS_overlap/AllOverlapSnps_sort.bed" "/project2/gilad/briana/threeprimeseq/data/GWAS_overlap/AllSnps_GWASoverlapped.txt"

Still only get 2 that overlap the catelog. They are in the ITGAL and NCAPG genes. I should check if 16:30482494 (the nuclear QTL) is also a eQTL not how i did before but with my code from the all boxplot analysis

plotQTL_func= function(SNP, peak, gene){
  apaN_file=read.table(paste("../data/apaExamp/qtlSNP_PeakAPANuclear.", SNP, peak, ".txt", sep = "" ), header=T)
  apaT_file=read.table(paste("../data/apaExamp/qtlSNP_PeakAPATotal.", SNP, peak, ".txt", sep = "" ), header=T)
  su30_file=read.table(paste("../data/apaExamp/qtlSNP_Peak_4su_30_", SNP, gene, ".txt", sep=""), header = T)
  su60_file=read.table(paste("../data/apaExamp/qtlSNP_Peak_4su_60_", SNP, gene, ".txt", sep=""), header=T)
  RNA_file=read.table(paste("../data/apaExamp/qtlSNP_Peak_RNAseq_", SNP, gene, ".txt", sep=""),header=T)
  RNAg_file=read.table(paste("../data/apaExamp/qtlSNP_Peak_RNAseqGeuvadis_", SNP, gene, ".txt", sep=""), header = T)
  ribo_file=read.table(paste("../data/apaExamp/qtlSNP_Peak_ribo_", SNP, gene, ".txt", sep=""),header=T)
  prot_file=read.table(paste("../data/apaExamp/qtlSNP_Peak_prot.", SNP, gene, ".txt", sep=""), header=T)
  
  ggplot_func= function(file, molPhen,GENE){
    file = file %>% mutate(genotype=Allele1 + Allele2)
    file$genotype= as.factor(as.character(file$genotype))
    plot=ggplot(file, aes(y=Pheno, x=genotype, by=genotype, fill=genotype)) + geom_boxplot(width=.25) + geom_jitter() + labs(y="Phenotpye",title=paste(molPhen, GENE, sep=": ")) + scale_fill_brewer(palette="Paired")
    return(plot)
  }
  
  apaNplot=ggplot_func(apaN_file, "Apa Nuclear", gene)
  apaTplot=ggplot_func(apaT_file, "Apa Total", gene)
  su30plot=ggplot_func(su30_file, "4su30",gene)
  su60plot=ggplot_func(su60_file, "4su60",gene)
  RNAplot=ggplot_func(RNA_file, "RNA Seq",gene)
  RNAgPlot=ggplot_func(RNAg_file, "RNA Seq Geuvadis",gene)
  riboPlot= ggplot_func(ribo_file, "Ribo Seq",gene)
  protplot=ggplot_func(prot_file, "Protein",gene)
  
  full_plot= plot_grid(apaNplot,apaTplot, su30plot, su60plot, RNAplot, RNAgPlot, riboPlot, protplot,nrow=2)
  return (full_plot)
}

16:30482494 PPP4C_+_peak122195

grep peak122195 /project2/gilad/briana/threeprimeseq/data/perm_APAqtl_trans/filtered_APApeaks_merged_allchrom_refseqGenes_pheno_Nuclear_transcript_permResBH.txt
#gene=PPP4C
grep PPP4C /project2/gilad/briana/genome_anotation_data/ensemble_to_genename.txt
#ensg= ENSG00000149923

python createQTLsnpAPAPhenTable.py 16 16:30482494  peak122195 Total
python createQTLsnpAPAPhenTable.py 16 16:30482494  peak122195 Nuclear


sbatch run_createQTLsnpMolPhenTable.sh "16" "16:30482494" "ENSG00000149923"

scp brimittleman@midway2.rcc.uchicago.edu:/project2/gilad/briana/threeprimeseq/data/ApaQTL_examples/*16:30482494* /Users/bmittleman1/Documents/Gilad_lab/threeprimeseq/data/apaExamp
plotQTL_func(SNP="16:30482494", peak="peak122195", gene="ENSG00000149923")
Warning: Removed 2 rows containing non-finite values (stat_boxplot).
Warning: Removed 2 rows containing missing values (geom_point).

This is in a GWAS for Ulcerative colitis.

I can look at the LD snp as well. I just need to check the ld snps and see which snp it corresponds to in my QTLs.

4:17797966

grep snp_4_17797966 /project2/gilad/briana/threeprimeseq/data/GWAS_overlap/NuclearApaQTL_LD_geu/allChr.NuclearQTL.LD.gene.ld_noIndel

In my analysis the snp is 4:17797455 DCAF16_-_peak236311: This is also a different gene.

grep peak236311 /project2/gilad/briana/threeprimeseq/data/perm_APAqtl_trans/filtered_APApeaks_merged_allchrom_refseqGenes_pheno_Nuclear_transcript_permResBH.txt
#gene=PPP4C
grep DCAF16 /project2/gilad/briana/genome_anotation_data/ensemble_to_genename.txt
#ensg=ENSG00000163257

python createQTLsnpAPAPhenTable.py 4 4:17797455  peak236311 Total
python createQTLsnpAPAPhenTable.py 4 4:17797455  peak236311 Nuclear


sbatch run_createQTLsnpMolPhenTable.sh "4" "4:17797455" "ENSG00000163257"

scp brimittleman@midway2.rcc.uchicago.edu:/project2/gilad/briana/threeprimeseq/data/ApaQTL_examples/*4:17797455* /Users/bmittleman1/Documents/Gilad_lab/threeprimeseq/data/apaExamp
plotQTL_func(SNP="4:17797455", peak="peak236311", gene="ENSG00000163257")

This example is a GWAS hit for height .

Session information

sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS Sierra 10.12.6

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] bindrcpp_0.2.2  cowplot_0.9.3   forcats_0.3.0   stringr_1.3.1  
 [5] dplyr_0.7.6     purrr_0.2.5     readr_1.1.1     tidyr_0.8.1    
 [9] tibble_1.4.2    ggplot2_3.0.0   tidyverse_1.2.1 workflowr_1.1.1

loaded via a namespace (and not attached):
 [1] tidyselect_0.2.4   haven_1.1.2        lattice_0.20-35   
 [4] colorspace_1.3-2   htmltools_0.3.6    yaml_2.2.0        
 [7] rlang_0.2.2        R.oo_1.22.0        pillar_1.3.0      
[10] glue_1.3.0         withr_2.1.2        R.utils_2.7.0     
[13] RColorBrewer_1.1-2 modelr_0.1.2       readxl_1.1.0      
[16] bindr_0.1.1        plyr_1.8.4         munsell_0.5.0     
[19] gtable_0.2.0       cellranger_1.1.0   rvest_0.3.2       
[22] R.methodsS3_1.7.1  evaluate_0.11      labeling_0.3      
[25] knitr_1.20         broom_0.5.0        Rcpp_0.12.19      
[28] scales_1.0.0       backports_1.1.2    jsonlite_1.5      
[31] hms_0.4.2          digest_0.6.17      stringi_1.2.4     
[34] grid_3.5.1         rprojroot_1.3-2    cli_1.0.1         
[37] tools_3.5.1        magrittr_1.5       lazyeval_0.2.1    
[40] crayon_1.3.4       whisker_0.3-2      pkgconfig_2.0.2   
[43] xml2_1.2.0         lubridate_1.7.4    assertthat_0.2.0  
[46] rmarkdown_1.10     httr_1.3.1         rstudioapi_0.8    
[49] R6_2.3.0           nlme_3.1-137       git2r_0.23.0      
[52] compiler_3.5.1    



This reproducible R Markdown analysis was created with workflowr 1.1.1