Last updated: 2019-03-11

Checks: 6 0

Knit directory: threeprimeseq/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.2.0). The Report tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(12345) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/.DS_Store
    Ignored:    data/perm_QTL_trans_noMP_5percov/
    Ignored:    output/.DS_Store

Untracked files:
    Untracked:  KalistoAbundance18486.txt
    Untracked:  analysis/4suDataIGV.Rmd
    Untracked:  analysis/DirectionapaQTL.Rmd
    Untracked:  analysis/EmpDistforOverlaps.Rmd
    Untracked:  analysis/EvaleQTLs.Rmd
    Untracked:  analysis/NuclearSpecQTL.Rmd
    Untracked:  analysis/YL_QTL_test.Rmd
    Untracked:  analysis/groSeqAnalysis.Rmd
    Untracked:  analysis/ncbiRefSeq_sm.sort.mRNA.bed
    Untracked:  analysis/snake.config.notes.Rmd
    Untracked:  analysis/verifyBAM.Rmd
    Untracked:  analysis/verifybam_dubs.Rmd
    Untracked:  code/PeaksToCoverPerReads.py
    Untracked:  code/strober_pc_pve_heatmap_func.R
    Untracked:  data/18486.genecov.txt
    Untracked:  data/APApeaksYL.total.inbrain.bed
    Untracked:  data/AllPeak_counts/
    Untracked:  data/ApaQTLs/
    Untracked:  data/ApaQTLs_otherPhen/
    Untracked:  data/ChromHmmOverlap/
    Untracked:  data/DistTXN2Peak_genelocAnno/
    Untracked:  data/FeatureoverlapPeaks/
    Untracked:  data/GM12878.chromHMM.bed
    Untracked:  data/GM12878.chromHMM.txt
    Untracked:  data/GWAS_overlap/
    Untracked:  data/LianoglouLCL/
    Untracked:  data/LocusZoom/
    Untracked:  data/LocusZoom_Unexp/
    Untracked:  data/LocusZoom_proc/
    Untracked:  data/MatchedSnps/
    Untracked:  data/NucSpecQTL/
    Untracked:  data/NuclearApaQTLs.txt
    Untracked:  data/PeakCounts/
    Untracked:  data/PeakCounts_noMP_5perc/
    Untracked:  data/PeakCounts_noMP_genelocanno/
    Untracked:  data/PeakUsage/
    Untracked:  data/PeakUsage_noMP/
    Untracked:  data/PeakUsage_noMP_GeneLocAnno/
    Untracked:  data/PeaksUsed/
    Untracked:  data/PeaksUsed_noMP_5percCov/
    Untracked:  data/PolyA_DB/
    Untracked:  data/QTL_overlap/
    Untracked:  data/RNAkalisto/
    Untracked:  data/RefSeq_annotations/
    Untracked:  data/Replicates_usage/
    Untracked:  data/Signal_Loc/
    Untracked:  data/TotalApaQTLs.txt
    Untracked:  data/Totalpeaks_filtered_clean.bed
    Untracked:  data/UnderstandPeaksQC/
    Untracked:  data/WASP_STAT/
    Untracked:  data/YL-SP-18486-T-combined-genecov.txt
    Untracked:  data/YL-SP-18486-T_S9_R1_001-genecov.txt
    Untracked:  data/YL_QTL_test/
    Untracked:  data/apaExamp/
    Untracked:  data/apaExamp_proc/
    Untracked:  data/apaQTL_examp_noMP/
    Untracked:  data/bedgraph_peaks/
    Untracked:  data/bin200.5.T.nuccov.bed
    Untracked:  data/bin200.Anuccov.bed
    Untracked:  data/bin200.nuccov.bed
    Untracked:  data/clean_peaks/
    Untracked:  data/comb_map_stats.csv
    Untracked:  data/comb_map_stats.xlsx
    Untracked:  data/comb_map_stats_39ind.csv
    Untracked:  data/combined_reads_mapped_three_prime_seq.csv
    Untracked:  data/diff_iso_GeneLocAnno/
    Untracked:  data/diff_iso_proc/
    Untracked:  data/diff_iso_trans/
    Untracked:  data/eQTLs_Lietal/
    Untracked:  data/ensemble_to_genename.txt
    Untracked:  data/example_gene_peakQuant/
    Untracked:  data/explainProtVar/
    Untracked:  data/filtPeakOppstrand_cov_noMP_GeneLocAnno_5perc/
    Untracked:  data/filtered_APApeaks_merged_allchrom_refseqTrans.closest2End.bed
    Untracked:  data/filtered_APApeaks_merged_allchrom_refseqTrans.closest2End.noties.bed
    Untracked:  data/first50lines_closest.txt
    Untracked:  data/gencov.test.csv
    Untracked:  data/gencov.test.txt
    Untracked:  data/gencov_zero.test.csv
    Untracked:  data/gencov_zero.test.txt
    Untracked:  data/gene_cov/
    Untracked:  data/joined
    Untracked:  data/leafcutter/
    Untracked:  data/merged_combined_YL-SP-threeprimeseq.bg
    Untracked:  data/molPheno_noMP/
    Untracked:  data/mol_overlap/
    Untracked:  data/mol_pheno/
    Untracked:  data/nom_QTL/
    Untracked:  data/nom_QTL_opp/
    Untracked:  data/nom_QTL_trans/
    Untracked:  data/nuc6up/
    Untracked:  data/nuc_10up/
    Untracked:  data/other_qtls/
    Untracked:  data/pQTL_otherphen/
    Untracked:  data/pacbio_cov/
    Untracked:  data/peakPerRefSeqGene/
    Untracked:  data/peaks4DT/
    Untracked:  data/perm_QTL/
    Untracked:  data/perm_QTL_GeneLocAnno_noMP_5percov/
    Untracked:  data/perm_QTL_GeneLocAnno_noMP_5percov_3UTR/
    Untracked:  data/perm_QTL_diffWindow/
    Untracked:  data/perm_QTL_opp/
    Untracked:  data/perm_QTL_trans/
    Untracked:  data/perm_QTL_trans_filt/
    Untracked:  data/protAndAPAAndExplmRes.Rda
    Untracked:  data/protAndAPAlmRes.Rda
    Untracked:  data/protAndExpressionlmRes.Rda
    Untracked:  data/reads_mapped_three_prime_seq.csv
    Untracked:  data/smash.cov.results.bed
    Untracked:  data/smash.cov.results.csv
    Untracked:  data/smash.cov.results.txt
    Untracked:  data/smash_testregion/
    Untracked:  data/ssFC200.cov.bed
    Untracked:  data/temp.file1
    Untracked:  data/temp.file2
    Untracked:  data/temp.gencov.test.txt
    Untracked:  data/temp.gencov_zero.test.txt
    Untracked:  data/threePrimeSeqMetaData.csv
    Untracked:  data/threePrimeSeqMetaData55Ind.txt
    Untracked:  data/threePrimeSeqMetaData55Ind.xlsx
    Untracked:  data/threePrimeSeqMetaData55Ind_noDup.txt
    Untracked:  data/threePrimeSeqMetaData55Ind_noDup.xlsx
    Untracked:  data/threePrimeSeqMetaData55Ind_noDup_WASPMAP.txt
    Untracked:  data/threePrimeSeqMetaData55Ind_noDup_WASPMAP.xlsx
    Untracked:  output/LZ/
    Untracked:  output/deeptools_plots/
    Untracked:  output/picard/
    Untracked:  output/plots/
    Untracked:  output/qual.fig2.pdf

Unstaged changes:
    Modified:   analysis/28ind.peak.explore.Rmd
    Modified:   analysis/CompareLianoglouData.Rmd
    Modified:   analysis/NewPeakPostMP.Rmd
    Modified:   analysis/SignalSiteLoc.Rmd
    Modified:   analysis/apaQTLoverlapGWAS.Rmd
    Modified:   analysis/characterize_apaQTLs.Rmd
    Modified:   analysis/cleanupdtseq.internalpriming.Rmd
    Modified:   analysis/coloc_apaQTLs_protQTLs.Rmd
    Modified:   analysis/dif.iso.usage.leafcutter.Rmd
    Modified:   analysis/diff_iso_pipeline.Rmd
    Modified:   analysis/explainpQTLs.Rmd
    Modified:   analysis/explore.filters.Rmd
    Modified:   analysis/fixBWChromNames.Rmd
    Modified:   analysis/flash2mash.Rmd
    Modified:   analysis/initialPacBioQuant.Rmd
    Modified:   analysis/mispriming_approach.Rmd
    Modified:   analysis/overlapMolQTL.Rmd
    Modified:   analysis/overlapMolQTL.opposite.Rmd
    Modified:   analysis/overlap_qtls.Rmd
    Modified:   analysis/peakOverlap_oppstrand.Rmd
    Modified:   analysis/peakQCPPlots.Rmd
    Modified:   analysis/pheno.leaf.comb.Rmd
    Modified:   analysis/pipeline_55Ind.Rmd
    Modified:   analysis/swarmPlots_QTLs.Rmd
    Modified:   analysis/test.max2.Rmd
    Modified:   analysis/test.smash.Rmd
    Modified:   analysis/understandPeaks.Rmd
    Modified:   analysis/unexplainedeQTL_analysis.Rmd
    Modified:   code/Snakefile

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view them.

File Version Author Date Message
Rmd 1f3e5f6 Briana Mittleman 2019-03-11 add matched snp and result plot
html 9d234b6 Briana Mittleman 2019-03-09 Build site.
Rmd e69f2d3 Briana Mittleman 2019-03-09 add new GWAS overlap
html 55a488c Briana Mittleman 2019-03-09 Build site.
Rmd ea54d47 Briana Mittleman 2019-03-09 add new GWAS overlap

library(workflowr)
This is workflowr version 1.2.0
Run ?workflowr for help getting started
library(tidyverse)
── Attaching packages ───────────────────────────────────────────────────────────────────────────────────── tidyverse 1.2.1 ──
✔ ggplot2 3.1.0       ✔ purrr   0.3.1  
✔ tibble  2.0.1       ✔ dplyr   0.8.0.1
✔ tidyr   0.8.3       ✔ stringr 1.4.0  
✔ readr   1.3.1       ✔ forcats 0.4.0  
Warning: package 'tibble' was built under R version 3.5.2
Warning: package 'tidyr' was built under R version 3.5.2
Warning: package 'purrr' was built under R version 3.5.2
Warning: package 'dplyr' was built under R version 3.5.2
Warning: package 'stringr' was built under R version 3.5.2
Warning: package 'forcats' was built under R version 3.5.2
── Conflicts ──────────────────────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
library(data.table)
Warning: package 'data.table' was built under R version 3.5.2

Attaching package: 'data.table'
The following objects are masked from 'package:dplyr':

    between, first, last
The following object is masked from 'package:purrr':

    transpose

QTLs

Full GWAS catelog from the table browser. There are 56248699 lines in this file:

/project2/gilad/briana/genome_anotation_data/hg19.GWASCatelog.allsnps

First I want to subset this to a bed file to use. I also want to subset only to SNPs.

Columns: bin chrom chromStart chromEnd name score strand refNCBI refUCSC observed molType class valid avHet avHetSE func locType weight exceptions submitterCount submitters alleleFreqCount alleles alleleNs alleleFreqs bitfields

sed 's/^chr//' /project2/gilad/briana/genome_anotation_data/hg19.GWASCatelog.allsnps  > /project2/gilad/briana/genome_anotation_data/hg19.GWASCatelog.allsnps.bed

overlapSNPsGWAS_fixed.py

import pybedtools as pybedtools

def main(infile, outfile):
    gwas_file=open("/project2/gilad/briana/genome_anotation_data/hg19.GWASCatelog.allsnps.bed","r")
    gwas=pybedtools.BedTool(gwas_file)
    snps_file=open(infile, "r")
    snps=pybedtools.BedTool(snps_file)
    snpOverGWAS=snps.intersect(gwas, wa=True,wb=True)
    snpOverGWAS.saveas(outfile)

if __name__ == "__main__":
    import sys
    import pybedtools
    infile=sys.argv[1]
    outfile=sys.argv[2]
    main(infile, outfile) 

run_overlapSNPsGWASFixed_proc.sh

#!/bin/bash

#SBATCH --job-name=run_overlapSNPsGWASFixed_proc
#SBATCH --account=pi-yangili1
#SBATCH --time=5:00:00
#SBATCH --output=run_overlapSNPsGWASFixed_proc.out
#SBATCH --error=run_overlapSNPsGWASFixed_proc.err
#SBATCH --partition=broadwl
#SBATCH --mem=10G
#SBATCH --mail-type=END


module load Anaconda3
source activate three-prime-env


python overlapSNPsGWAS_fixed.py  "/project2/gilad/briana/threeprimeseq/data/GWAS_overlap_processed/AllOverlapSnps.bed" "/project2/gilad/briana/threeprimeseq/data/GWAS_overlap_processed/GWASoverlapped_AllOverlapSnps.bed"


This analysis gives 9k overlaps with 7k uniq snps. of (53135726 uniq snps)

This makes more sense.

I want to only look at relevent GWAS for LCLs

QTLOverlap=fread("../data/GWAS_overlap/GWASoverlapped_AllOverlapSnps.bed", header=F, col.names = c("chromSnp", "startSnp", "endSnp", "Set", "chromGwas", "startGWAS", "endGWAS", "rsID", "score", "strand"))
QTL_overlap_Total=QTLOverlap %>% filter(grepl("Total",Set))

QTL_overlap_Nuclear=QTLOverlap %>% filter(grepl("Nuclear",Set))

MAtched snps

I will also need to compare to random snps. (i can use my matched snps/find those in LD)

  • /project2/gilad/briana/threeprimeseq/data/MatchedSnp/Nuclear_matched_snps_sort.bed
  • /project2/gilad/briana/threeprimeseq/data/MatchedSnp/Total_matched_snps_sort.bed

Switch to format: snp_10_3154947

fixMatchedFormat.py

def fix_format(inbed,outf):
    bed=open(inbed, "r")
    outF=open(outf, "w")
    for ln in bed:
        chrom, start, end = ln.split()
        outF.write("snp_%s_%s\n"%(chrom, end))
    outF.close()


fix_format("/project2/gilad/briana/threeprimeseq/data/MatchedSnp/Nuclear_matched_snps_sort.bed", "/project2/gilad/briana/threeprimeseq/data/MatchedSnp/Nuclear_matched_snps_GEUFormat.txt") 

fix_format("/project2/gilad/briana/threeprimeseq/data/MatchedSnp/Total_matched_snps_sort.bed", "/project2/gilad/briana/threeprimeseq/data/MatchedSnp/Total_matched_snps_GEUFormat.txt") 

subset_plink4Matched_proc.py

def main(genFile, qtlFile, outFile):
  #convert snp file to a list: 
  def file_to_list(file):
    snp_list=[]
    for ln in file:
      snp=ln.strip()
      snp_list.append(snp)
    return(snp_list)

  gen=open(genFile,"r")
  fout=open(outFile, "w")
  qtls=open(qtlFile, "r")
  qtl_list=file_to_list(qtls)
  for ln in gen:
      snp=ln.split()[2]
      if snp in qtl_list:
          fout.write(ln)
  fout.close()
    

if __name__ == "__main__":
    import sys
    chrom=sys.argv[1]
    fraction=sys.argv[2]
    genFile = "/project2/gilad/briana/threeprimeseq/data/GWAS_overlap/geu_plinkYRI_LDchr%s.ld"%(chrom)
    outFile= "/project2/gilad/briana/threeprimeseq/data/GWAS_overlap_matched/%sApaMatch_LD/chr%s.%sMatch.LD.geno.ld"%(fraction,chrom,fraction)
    qtlFile= "/project2/gilad/briana/threeprimeseq/data/MatchedSnp/%s_matched_snps_GEUFormat.txt"%(fraction)
    main(genFile, qtlFile, outFile) 

run_subset_plink4Matched_proc.sh

#!/bin/bash

#SBATCH --job-name=run_subset_plink4Matched_proc
#SBATCH --account=pi-yangili1
#SBATCH --time=36:00:00
#SBATCH --output=subset_plink4Matched_proc.out
#SBATCH --error=subset_plink4Matched_proc.err
#SBATCH --partition=broadwl
#SBATCH --mem=30G
#SBATCH --mail-type=END


module load Anaconda3
source activate three-prime-env


for i  in {1..22};
do
python subset_plink4Matched_proc.py ${i} "Total"
done

for i  in {1..22};
do
python subset_plink4Matched_proc.py ${i} "Nuclear"
done

Cat and remove indels:
/project2/gilad/briana/threeprimeseq/data/GWAS_overlap_matched/FractionApaMatch_LD/

cat chr* > allChr.TotalMatch.LD.geno.ld
grep -v indel allChr.TotalMatch.LD.geno.ld > allChr.TotalMatch.LD.geno.ld_noIndel

cat chr* > allChr.NuclearMatch.LD.geno.ld
grep -v indel allChr.NuclearMatch.LD.geno.ld > allChr.NuclearMatch.LD.geno.ld_noIndel

make into bed files:

makeAlloverlapbed_Matched.py


#load files:  

QTL_total=open("/project2/gilad/briana/threeprimeseq/data/MatchedSnp/Total_matched_snps_GEUFormat.txt", "r")
QTL_nuclear=open("/project2/gilad/briana/threeprimeseq/data/MatchedSnp/Nuclear_matched_snps_GEUFormat.txt", "r")
LD_total=open("/project2/gilad/briana/threeprimeseq/data/GWAS_overlap_matched/TotalApaMatch_LD/allChr.TotalMatch.LD.geno.ld_noIndel", "r")
LD_nuclear=open("/project2/gilad/briana/threeprimeseq/data/GWAS_overlap_matched/NuclearApaMatch_LD/allChr.NuclearMatch.LD.geno.ld_noIndel", "r")
outFile= open("/project2/gilad/briana/threeprimeseq/data/GWAS_overlap_matched/AllOverlapMatchSnps.bed", "w")

#function for qtl to bed format
def qtl2bed(fqtl, fraction, fout=outFile):
    for ln in fqtl:
        snp, chrom, pos = ln.split("_")
        start=int(pos)-1
        end= int(pos)
        fout.write("%s\t%d\t%d\tQTL_%s\n"%(chrom, start, end,fraction))

#function for ld to bed format 
def ld2bed(fLD, fraction, fout=outFile):
    for ln in fLD:
        snpID=ln.split()[5]
        snp, chrom, pos= snpID.split("_")
        start=int(pos)-1
        end=int(pos)
        fout.write("%s\t%d\t%d\tLD_%s\n"%(chrom, start, end,fraction))


#I will run each of these for both fractions to get all of the snps in the out file. 


qtl2bed(QTL_nuclear, "Nuclear")
qtl2bed(QTL_total, "Total")
ld2bed(LD_nuclear, "Nuclear")
ld2bed(LD_total, "Total")


outFile.close()

Run the gwas ovelap:

run_overlapSNPsGWASFixed_match.sh

#!/bin/bash

#SBATCH --job-name=run_overlapSNPsGWASFixed_match
#SBATCH --account=pi-yangili1
#SBATCH --time=5:00:00
#SBATCH --output=run_overlapSNPsGWASFixed_match.out
#SBATCH --error=run_overlapSNPsGWASFixed_match.err
#SBATCH --partition=broadwl
#SBATCH --mem=10G
#SBATCH --mail-type=END


module load Anaconda3
source activate three-prime-env


python overlapSNPsGWAS_fixed.py  "/project2/gilad/briana/threeprimeseq/data/GWAS_overlap_matched/AllOverlapMatchSnps.bed" "/project2/gilad/briana/threeprimeseq/data/GWAS_overlap_matched/GWASOverlap_AllOverlapMatchSnps.bed"
MatchOverlap=fread("../data/GWAS_overlap/GWASOverlap_AllOverlapMatchSnps.bed", header=F, col.names = c("chromSnp", "startSnp", "endSnp", "Set", "chromGwas", "startGWAS", "endGWAS", "rsID", "score", "strand"))
MatchOverlap_Total=MatchOverlap %>% filter(grepl("Total",Set))

MatchOverlap_Nuclear=MatchOverlap %>% filter(grepl("Nuclear",Set))

Compare:

MatchTot= MatchOverlap_Total %>% select(rsID) %>% unique() %>% nrow()
MatchNuc= MatchOverlap_Nuclear  %>% select(rsID) %>% unique() %>% nrow()
QTL_tot=QTL_overlap_Total %>% select(rsID) %>% unique() %>% nrow()
QTL_nuc= QTL_overlap_Nuclear %>% select(rsID) %>% unique() %>% nrow()

Number of uniq snps in GWAS catelog

GWAS_snp=53135726

totpval= phyper(QTL_tot, GWAS_snp, GWAS_snp,MatchTot+QTL_tot, lower.tail = F )

nucpval= phyper(QTL_nuc, GWAS_snp, GWAS_snp,MatchNuc+QTL_nuc ,lower.tail = F)
GWASdf=as.data.frame(cbind(Fraction=c("Total", "Total", "Nuclear", "Nuclear"),Type=c("QTL", "Match", "QTL", "Match"),Value=c(QTL_tot,MatchTot, QTL_nuc, MatchNuc)))
GWASdf$Value=as.numeric(as.character(GWASdf$Value))


anno_df=data.frame(Type="QTL",Value=6300,
                      Fraction = factor("Nuclear",levels = c("Nuclear","Total")))
anno_df2=data.frame(Type="QTL",Value=6000,
                      Fraction = factor("Nuclear",levels = c("Nuclear","Total")))

GwasOverlap=ggplot(GWASdf, aes(x=Type, by=Type, fill=Type, y=Value)) + geom_bar(position="dodge", stat="identity") + facet_grid(~Fraction) + labs(y="N overlap snps",title="apaQTLs overlap with GWAS catelog")+ geom_text(data = anno_df,aes(label="P < .0001")) + scale_fill_manual(values= c("Grey", "Blue")) + geom_text(data = anno_df2,aes(label="***"))
GwasOverlap

ggsave(GwasOverlap, file="../output/plots/apaQTLsoverlapGWASCatelog.png")
Saving 7 x 5 in image


sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS  10.14.1

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] data.table_1.12.0 forcats_0.4.0     stringr_1.4.0    
 [4] dplyr_0.8.0.1     purrr_0.3.1       readr_1.3.1      
 [7] tidyr_0.8.3       tibble_2.0.1      ggplot2_3.1.0    
[10] tidyverse_1.2.1   workflowr_1.2.0  

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.0       cellranger_1.1.0 plyr_1.8.4       pillar_1.3.1    
 [5] compiler_3.5.1   git2r_0.24.0     tools_3.5.1      digest_0.6.18   
 [9] lubridate_1.7.4  jsonlite_1.6     evaluate_0.13    nlme_3.1-137    
[13] gtable_0.2.0     lattice_0.20-38  pkgconfig_2.0.2  rlang_0.3.1     
[17] cli_1.0.1        rstudioapi_0.9.0 yaml_2.2.0       haven_2.1.0     
[21] xfun_0.5         withr_2.1.2      xml2_1.2.0       httr_1.4.0      
[25] knitr_1.21       hms_0.4.2        generics_0.0.2   fs_1.2.6        
[29] rprojroot_1.3-2  grid_3.5.1       tidyselect_0.2.5 glue_1.3.0      
[33] R6_2.4.0         readxl_1.3.0     rmarkdown_1.11   reshape2_1.4.3  
[37] modelr_0.1.4     magrittr_1.5     whisker_0.3-2    backports_1.1.3 
[41] scales_1.0.0     htmltools_0.3.6  rvest_0.3.2      assertthat_0.2.0
[45] colorspace_1.4-0 labeling_0.3     stringi_1.3.1    lazyeval_0.2.1  
[49] munsell_0.5.0    broom_0.5.1      crayon_1.3.4