Last updated: 2018-09-06
workflowr checks: (Click a bullet for more information) ✔ R Markdown file: up-to-date
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
✔ Environment: empty
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
✔ Seed:
set.seed(12345)
The command set.seed(12345)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
✔ Session information: recorded
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
✔ Repository version: 46b7343
wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: output/.DS_Store
Untracked files:
Untracked: analysis/ncbiRefSeq_sm.sort.mRNA.bed
Untracked: analysis/snake.config.notes.Rmd
Untracked: data/18486.genecov.txt
Untracked: data/APApeaksYL.total.inbrain.bed
Untracked: data/RNAkalisto/
Untracked: data/Totalpeaks_filtered_clean.bed
Untracked: data/YL-SP-18486-T-combined-genecov.txt
Untracked: data/YL-SP-18486-T_S9_R1_001-genecov.txt
Untracked: data/bedgraph_peaks/
Untracked: data/bin200.5.T.nuccov.bed
Untracked: data/bin200.Anuccov.bed
Untracked: data/bin200.nuccov.bed
Untracked: data/clean_peaks/
Untracked: data/comb_map_stats.csv
Untracked: data/comb_map_stats.xlsx
Untracked: data/combined_reads_mapped_three_prime_seq.csv
Untracked: data/gencov.test.csv
Untracked: data/gencov.test.txt
Untracked: data/gencov_zero.test.csv
Untracked: data/gencov_zero.test.txt
Untracked: data/gene_cov/
Untracked: data/joined
Untracked: data/leafcutter/
Untracked: data/merged_combined_YL-SP-threeprimeseq.bg
Untracked: data/nom_QTL/
Untracked: data/nom_QTL_opp/
Untracked: data/nuc6up/
Untracked: data/other_qtls/
Untracked: data/peakPerRefSeqGene/
Untracked: data/perm_QTL/
Untracked: data/perm_QTL_opp/
Untracked: data/reads_mapped_three_prime_seq.csv
Untracked: data/smash.cov.results.bed
Untracked: data/smash.cov.results.csv
Untracked: data/smash.cov.results.txt
Untracked: data/smash_testregion/
Untracked: data/ssFC200.cov.bed
Untracked: data/temp.file1
Untracked: data/temp.file2
Untracked: data/temp.gencov.test.txt
Untracked: data/temp.gencov_zero.test.txt
Untracked: output/picard/
Untracked: output/plots/
Untracked: output/qual.fig2.pdf
Unstaged changes:
Modified: analysis/28ind.peak.explore.Rmd
Modified: analysis/cleanupdtseq.internalpriming.Rmd
Modified: analysis/dif.iso.usage.leafcutter.Rmd
Modified: analysis/explore.filters.Rmd
Modified: analysis/peak.cov.pipeline.Rmd
Modified: analysis/peakOverlap_oppstrand.Rmd
Modified: analysis/pheno.leaf.comb.Rmd
Modified: analysis/test.max2.Rmd
Modified: code/Snakefile
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 46b7343 | Briana Mittleman | 2018-09-06 | add overlap analysis with code to subset |
I will use this to overlap my QTLs with the other molecular QTLs already identified in the same individuals. First pass I will subset my nuclear and total nomial qtls by the snps with pvals less than .05 in each of the sets and make a qqplot.
I want to create a python script that takes in which type of qtl and a pvalue and subsets the full file for snps that pass that filter.
subset_qtls.py
def main(inFile, outFile, qtl, cutoff):
fout=open(outFile, "w")
ifile=open(inFile, "r")
cutoff=float(cutoff)
qtl_types= ['4su_30', '4su_60', 'RNAseq', 'RNAseqGeuvadis', 'ribo', 'prot']
if qtl not in qtl_types:
raise NameError("QTL arg must be 4su_30, 4su_60, RNAseq, RNAseqGeuvadis, ribo, or prot")
elif qtl=="4su_30":
target=4
elif qtl=="4su60":
target=5
elif qtl=="RNAseq":
target=6
elif qtl=="RNAseqGeuvadis":
target=7
elif qtl=="ribo":
target =8
elif qtl=="prot":
target=9
for num,ln in enumerate(ifile):
if num > 0 :
line_list = ln.split()
chrom=line_list[0]
pos=line_list[1]
rsid=line_list[2]
geneID=line_list[3]
val = float(line_list[target].split(":")[0])
if val <= cutoff:
fout.write("%s\t%s\t%s\t%s\t%f\n"%(chrom, pos, rsid, geneID,val))
if __name__ == "__main__":
import sys
qtl = sys.argv[1]
cutoff= sys.argv[2]
inFile = "/project2/gilad/briana/threeprimeseq/data/otherQTL/summary_betas_ste_100kb.txt"
outFile = "/project2/gilad/briana/threeprimeseq/data/otherQTL/summary_betas_ste_100kb.%s%s.txt"%(qtl, cutoff)
main(inFile, outFile, qtl, cutoff)
I can run this to subset by each qtl at .05
run_subsetQTLs05.sh
#!/bin/bash
#SBATCH --job-name=run_subsetqtl05
#SBATCH --account=pi-yangili1
#SBATCH --time=24:00:00
#SBATCH --output=run_subsetqtl05.out
#SBATCH --error=run_subsetqtl05.err
#SBATCH --partition=broadwl
#SBATCH --mem=12G
#SBATCH --mail-type=END
module load Anaconda3
source activate three-prime-env
qtls=('4su_30', '4su_60', 'RNAseq', 'RNAseqGeuvadis', 'ribo', 'prot')
for i in ${qtls[@]}; do
python subset_qtls.py $i .05
done
sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS Sierra 10.12.6
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
loaded via a namespace (and not attached):
[1] workflowr_1.1.1 Rcpp_0.12.18 digest_0.6.16
[4] rprojroot_1.3-2 R.methodsS3_1.7.1 backports_1.1.2
[7] git2r_0.23.0 magrittr_1.5 evaluate_0.11
[10] stringi_1.2.4 whisker_0.3-2 R.oo_1.22.0
[13] R.utils_2.7.0 rmarkdown_1.10 tools_3.5.1
[16] stringr_1.3.1 yaml_2.2.0 compiler_3.5.1
[19] htmltools_0.3.6 knitr_1.20
This reproducible R Markdown analysis was created with workflowr 1.1.1