Last updated: 2019-02-18
Checks: 6 0
Knit directory: threeprimeseq/analysis/
This reproducible R Markdown analysis was created with workflowr (version 1.2.0). The Report tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(12345)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: data/.DS_Store
Ignored: data/perm_QTL_trans_noMP_5percov/
Ignored: output/.DS_Store
Untracked files:
Untracked: KalistoAbundance18486.txt
Untracked: analysis/4suDataIGV.Rmd
Untracked: analysis/DirectionapaQTL.Rmd
Untracked: analysis/EvaleQTLs.Rmd
Untracked: analysis/YL_QTL_test.Rmd
Untracked: analysis/ncbiRefSeq_sm.sort.mRNA.bed
Untracked: analysis/snake.config.notes.Rmd
Untracked: analysis/verifyBAM.Rmd
Untracked: analysis/verifybam_dubs.Rmd
Untracked: code/PeaksToCoverPerReads.py
Untracked: code/strober_pc_pve_heatmap_func.R
Untracked: data/18486.genecov.txt
Untracked: data/APApeaksYL.total.inbrain.bed
Untracked: data/AllPeak_counts/
Untracked: data/ApaQTLs/
Untracked: data/ChromHmmOverlap/
Untracked: data/DistTXN2Peak_genelocAnno/
Untracked: data/GM12878.chromHMM.bed
Untracked: data/GM12878.chromHMM.txt
Untracked: data/LianoglouLCL/
Untracked: data/LocusZoom/
Untracked: data/NuclearApaQTLs.txt
Untracked: data/PeakCounts/
Untracked: data/PeakCounts_noMP_5perc/
Untracked: data/PeakCounts_noMP_genelocanno/
Untracked: data/PeakUsage/
Untracked: data/PeakUsage_noMP/
Untracked: data/PeakUsage_noMP_GeneLocAnno/
Untracked: data/PeaksUsed/
Untracked: data/PeaksUsed_noMP_5percCov/
Untracked: data/QTL_overlap/
Untracked: data/RNAkalisto/
Untracked: data/RefSeq_annotations/
Untracked: data/TotalApaQTLs.txt
Untracked: data/Totalpeaks_filtered_clean.bed
Untracked: data/UnderstandPeaksQC/
Untracked: data/WASP_STAT/
Untracked: data/YL-SP-18486-T-combined-genecov.txt
Untracked: data/YL-SP-18486-T_S9_R1_001-genecov.txt
Untracked: data/YL_QTL_test/
Untracked: data/apaExamp/
Untracked: data/apaQTL_examp_noMP/
Untracked: data/bedgraph_peaks/
Untracked: data/bin200.5.T.nuccov.bed
Untracked: data/bin200.Anuccov.bed
Untracked: data/bin200.nuccov.bed
Untracked: data/clean_peaks/
Untracked: data/comb_map_stats.csv
Untracked: data/comb_map_stats.xlsx
Untracked: data/comb_map_stats_39ind.csv
Untracked: data/combined_reads_mapped_three_prime_seq.csv
Untracked: data/diff_iso_GeneLocAnno/
Untracked: data/diff_iso_proc/
Untracked: data/diff_iso_trans/
Untracked: data/ensemble_to_genename.txt
Untracked: data/example_gene_peakQuant/
Untracked: data/explainProtVar/
Untracked: data/filtPeakOppstrand_cov_noMP_GeneLocAnno_5perc/
Untracked: data/filtered_APApeaks_merged_allchrom_refseqTrans.closest2End.bed
Untracked: data/filtered_APApeaks_merged_allchrom_refseqTrans.closest2End.noties.bed
Untracked: data/first50lines_closest.txt
Untracked: data/gencov.test.csv
Untracked: data/gencov.test.txt
Untracked: data/gencov_zero.test.csv
Untracked: data/gencov_zero.test.txt
Untracked: data/gene_cov/
Untracked: data/joined
Untracked: data/leafcutter/
Untracked: data/merged_combined_YL-SP-threeprimeseq.bg
Untracked: data/molPheno_noMP/
Untracked: data/mol_overlap/
Untracked: data/mol_pheno/
Untracked: data/nom_QTL/
Untracked: data/nom_QTL_opp/
Untracked: data/nom_QTL_trans/
Untracked: data/nuc6up/
Untracked: data/nuc_10up/
Untracked: data/other_qtls/
Untracked: data/pQTL_otherphen/
Untracked: data/peakPerRefSeqGene/
Untracked: data/perm_QTL/
Untracked: data/perm_QTL_GeneLocAnno_noMP_5percov/
Untracked: data/perm_QTL_GeneLocAnno_noMP_5percov_3UTR/
Untracked: data/perm_QTL_diffWindow/
Untracked: data/perm_QTL_opp/
Untracked: data/perm_QTL_trans/
Untracked: data/perm_QTL_trans_filt/
Untracked: data/protAndAPAAndExplmRes.Rda
Untracked: data/protAndAPAlmRes.Rda
Untracked: data/protAndExpressionlmRes.Rda
Untracked: data/reads_mapped_three_prime_seq.csv
Untracked: data/smash.cov.results.bed
Untracked: data/smash.cov.results.csv
Untracked: data/smash.cov.results.txt
Untracked: data/smash_testregion/
Untracked: data/ssFC200.cov.bed
Untracked: data/temp.file1
Untracked: data/temp.file2
Untracked: data/temp.gencov.test.txt
Untracked: data/temp.gencov_zero.test.txt
Untracked: data/threePrimeSeqMetaData.csv
Untracked: data/threePrimeSeqMetaData55Ind.txt
Untracked: data/threePrimeSeqMetaData55Ind.xlsx
Untracked: data/threePrimeSeqMetaData55Ind_noDup.txt
Untracked: data/threePrimeSeqMetaData55Ind_noDup.xlsx
Untracked: data/threePrimeSeqMetaData55Ind_noDup_WASPMAP.txt
Untracked: data/threePrimeSeqMetaData55Ind_noDup_WASPMAP.xlsx
Untracked: output/picard/
Untracked: output/plots/
Untracked: output/qual.fig2.pdf
Unstaged changes:
Modified: analysis/28ind.peak.explore.Rmd
Modified: analysis/CompareLianoglouData.Rmd
Modified: analysis/NewPeakPostMP.Rmd
Modified: analysis/apaQTLoverlapGWAS.Rmd
Modified: analysis/cleanupdtseq.internalpriming.Rmd
Modified: analysis/coloc_apaQTLs_protQTLs.Rmd
Modified: analysis/dif.iso.usage.leafcutter.Rmd
Modified: analysis/diffIsoAnalysisNewMapping.Rmd
Modified: analysis/diff_iso_pipeline.Rmd
Modified: analysis/explainpQTLs.Rmd
Modified: analysis/explore.filters.Rmd
Modified: analysis/flash2mash.Rmd
Modified: analysis/mispriming_approach.Rmd
Modified: analysis/overlapMolQTL.Rmd
Modified: analysis/overlapMolQTL.opposite.Rmd
Modified: analysis/overlap_qtls.Rmd
Modified: analysis/peakOverlap_oppstrand.Rmd
Modified: analysis/peakQCPPlots.Rmd
Modified: analysis/peakQCplotsSTARprocessing.Rmd
Modified: analysis/pheno.leaf.comb.Rmd
Modified: analysis/pipeline_55Ind.Rmd
Modified: analysis/swarmPlots_QTLs.Rmd
Modified: analysis/test.max2.Rmd
Modified: analysis/test.smash.Rmd
Modified: analysis/understandPeaks.Rmd
Modified: code/Snakefile
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view them.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 2d86d89 | Briana Mittleman | 2019-02-18 | add pi1 anaysis |
html | beb0d71 | Briana Mittleman | 2019-02-18 | Build site. |
Rmd | 3c1f049 | Briana Mittleman | 2019-02-18 | add gwas overlap |
library(workflowr)
This is workflowr version 1.2.0
Run ?workflowr for help getting started
library(tidyverse)
── Attaching packages ──────────────────────────────────────────────────────────────────────────── tidyverse 1.2.1 ──
✔ ggplot2 3.0.0 ✔ purrr 0.2.5
✔ tibble 1.4.2 ✔ dplyr 0.7.6
✔ tidyr 0.8.1 ✔ stringr 1.4.0
✔ readr 1.1.1 ✔ forcats 0.3.0
Warning: package 'stringr' was built under R version 3.5.2
── Conflicts ─────────────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag() masks stats::lag()
library(qvalue)
In this analysis I will look at the apaQTLs to draw biological insight. To do this I will run the following analysis:
Look at chromatin regions for QTLs (chromHMM)
Overlap apaQTLs between fractions
Overlap apaQTLs with GWAS
Goal: Find the nominal pvalue for the significant snp peak pair in oposite fraction. I can make a dictionary with the total and nuclear QTLs then run through the nominal files to get the pvalues:
Start with apa QTLs:
/project2/gilad/briana/threeprimeseq/data/ApaQTLs/Nuclear.apaQTLs.sort.bed
/project2/gilad/briana/threeprimeseq/data/ApaQTLs/Total.apaQTLs.sort.bed
NomResFromOppFrac.py
nucQTLs="/project2/gilad/briana/threeprimeseq/data/ApaQTLs/Nuclear.apaQTLs.sort.bed"
totQTLs="/project2/gilad/briana/threeprimeseq/data/ApaQTLs/Total.apaQTLs.sort.bed"
nucNom="/project2/gilad/briana/threeprimeseq/data/nominal_APAqtl_GeneLocAnno_noMP_5percUs/filtered_APApeaks_merged_allchrom_refseqGenes.GeneLocAnno_NoMP_sm_quant.Nuclear.fixed.pheno_5perc.fc.gz.qqnorm_allNomRes.txt"
totNom="/project2/gilad/briana/threeprimeseq/data/nominal_APAqtl_GeneLocAnno_noMP_5percUs/filtered_APApeaks_merged_allchrom_refseqGenes.GeneLocAnno_NoMP_sm_quant.Total.fixed.pheno_5perc.fc.gz.qqnorm_allNomRes.txt"
outnuc="/project2/gilad/briana/threeprimeseq/data/QTL_Overlap/TotQTLs_inNucFractionRes.txt"
outtot="/project2/gilad/briana/threeprimeseq/data/QTL_Overlap/NucQTLs_inTotFractionRes.txt"
def oppFract(inRes, inQTL, out):
fout=open(out, "w")
qtl_dic={}
#SNP is key, peak is value
for ln in open(inQTL,"r"):
snp=ln.split()[2]
chrom=ln.split()[0]
peak=ln.split()[3].split(":")[0]
qtl=str(chrom) + ":" + str(snp)
if qtl not in qtl_dic.keys():
qtl_dic[qtl]=[peak]
else:
qtl_dic[qtl].append(peak)
#print(qtl_dic)
for ln in open(inRes, "r"):
pval=ln.split()[3]
snp=ln.split()[1]
peak=ln.split()[0].split(":")[3].split("_")[-1]
if snp in qtl_dic.keys():
if peak in qtl_dic[snp]:
fout.write("%s\t%s\t%s\n"%(snp, peak, pval))
fout.close()
oppFract(nucNom, totQTLs,outnuc)
oppFract(totNom, nucQTLs, outtot)
Run in bash: run_NomResFromOppFrac.sh
#!/bin/bash
#SBATCH --job-name=NomResFromOppFrac
#SBATCH --account=pi-yangili1
#SBATCH --time=36:00:00
#SBATCH --output=NomResFromOppFrac.out
#SBATCH --error=NomResFromOppFrac.err
#SBATCH --partition=broadwl
#SBATCH --mem=30G
#SBATCH --mail-type=END
module load Anaconda3
source activate three-prime-env
python NomResFromOppFrac.py
names=c("SNP", "peak", "pval")
NucQTLinTot=read.table("../data/QTL_overlap/NucQTLs_inTotFractionRes.txt", stringsAsFactors = F, col.names = names)
TotQTLinNuc=read.table("../data/QTL_overlap/TotQTLs_inNucFractionRes.txt", stringsAsFactors = F, col.names = names)
Get pi values:
qvalTot= pi0est(NucQTLinTot$pval, pi0.method = "bootstrap")
1-qvalTot$pi0
[1] 0.8424242
qvalNuc= pi0est(TotQTLinNuc$pval, pi0.method = "bootstrap")
1-qvalNuc$pi0
[1] 0.9197861
plots:
par(mfrow=c(1,2))
hist(NucQTLinTot$pval,xlab="Total apaQTL pvalue", main="Nuclear apaQTLs \nin Total Fraction")
text(.6,200, paste("pi_1=", round((1-qvalTot$pi0), digit=3), sep=" "))
hist(TotQTLinNuc$pval,xlab="Nuclear apaQTL pvalue", main="Total apaQTLs \nin Nuclear Fraction")
text(.6,125, paste("pi_1=", round((1-qvalNuc$pi0), digit=3), sep=" "))
png("../output/plots/apaFractionOverlapPi1.png", width=1000, height = 500)
par(mfrow=c(1,2))
hist(NucQTLinTot$pval,xlab="Total apaQTL pvalue", main="Nuclear apaQTLs \nin Total Fraction")
text(.6,200, paste("pi_1=", round((1-qvalTot$pi0), digit=3), sep=" "))
hist(TotQTLinNuc$pval,xlab="Nuclear apaQTL pvalue", main="Total apaQTLs \nin Nuclear Fraction")
text(.6,125, paste("pi_1=", round((1-qvalNuc$pi0), digit=3), sep=" "))
dev.off()
quartz_off_screen
2
This provides evidence for high degree of QTL sharing with increased sharing total to nuclear. This demonstrates to me that there are nuclear QTLs that do not persist in the total fraction. I will want to learn more about these.
I did this analysis with the QTLs in the preprocessed 39 individual analysis. I will follow a similar pipeline here. I will find all of the snps in LD with the QTLs then test for these in the GWAS catelog. The pipeline I used to get the LD for all of the snp is shown here. The plink files are in /project2/gilad/briana/threeprimeseq/data/GWAS_overlap/. There are both map and ped files.
I can now adapt the subset_plink4QTLs.py file to take the current QTLs list. The file just has the QTLs with the chromosome and position. I can make this and put it in:
/project2/gilad/briana/threeprimeseq/data/GWAS_overlap_processed
The 50mb QTLs are in /project2/gilad/briana/threeprimeseq/data/ApaQTLs.
The QTL snps are in the 6th column.
cut -f6 -d" " /project2/gilad/briana/threeprimeseq/data/ApaQTLs/NuclearapaQTLs.GeneLocAnno.noMP.5perc.10FDR.txt | uniq > /project2/gilad/briana/threeprimeseq/data/ApaQTLs/NuclearQTLs_uniq_50mb.txt
cut -f6 -d" " /project2/gilad/briana/threeprimeseq/data/ApaQTLs/TotalapaQTLs.GeneLocAnno.noMP.5perc.10FDR.txt | uniq > /project2/gilad/briana/threeprimeseq/data/ApaQTLs/TotalQTLs_uniq_50mb.txt
I can convert these the the way they are in GEU snp files tony made (snp_num_pos)
QTLs2GeuSnps_proc.py
tot_in=open("/project2/gilad/briana/threeprimeseq/data/ApaQTLs/TotalQTLs_uniq_50mb.txt", "r")
nuc_in=open("/project2/gilad/briana/threeprimeseq/data/ApaQTLs/NuclearQTLs_uniq_50mb.txt", "r")
tot_out=open("/project2/gilad/briana/threeprimeseq/data/ApaQTLs/TotalQTLs_uniq_50mb_GEU.txt", "w")
nuc_out=open("/project2/gilad/briana/threeprimeseq/data/ApaQTLs/NuclearQTLs_uniq_50mb_GEU.txt", "w")
def fix_file(fin, fout):
for ln in fin:
chrom, pos = ln.split(":")
fout.write("snp_%s_%s"%(chrom,pos))
fout.close()
fix_file(tot_in, tot_out)
fix_file(nuc_in, nuc_out)
subset_plink4QTLs_proc.py
def main(genFile, qtlFile, outFile):
#convert snp file to a list:
def file_to_list(file):
snp_list=[]
for ln in file:
snp=ln.strip()
snp_list.append(snp)
return(snp_list)
gen=open(genFile,"r")
fout=open(outFile, "w")
qtls=open(qtlFile, "r")
qtl_list=file_to_list(qtls)
for ln in gen:
snp=ln.split()[2]
if snp in qtl_list:
fout.write(ln)
fout.close()
if __name__ == "__main__":
import sys
chrom=sys.argv[1]
fraction=sys.argv[2]
genFile = "/project2/gilad/briana/threeprimeseq/data/GWAS_overlap/geu_plinkYRI_LDchr%s.ld"%(chrom)
outFile= "/project2/gilad/briana/threeprimeseq/data/GWAS_overlap_processed/%sApaQTL_LD/chr%s.%sQTL.LD.geno.ld"%(fraction,chrom,fraction)
qtlFile= "/project2/gilad/briana/threeprimeseq/data/ApaQTLs/%sQTLs_uniq_50mb_GEU.txt"%(fraction)
main(genFile, qtlFile, outFile)
run_subset_plink4QTLs_proc.sh
#!/bin/bash
#SBATCH --job-name= run_subset_plink4QTLs_proc
#SBATCH --account=pi-yangili1
#SBATCH --time=36:00:00
#SBATCH --output=run_subset_plink4QTLs_proc.out
#SBATCH --error=run_subset_plink4QTLs_proc.err
#SBATCH --partition=broadwl
#SBATCH --mem=30G
#SBATCH --mail-type=END
module load Anaconda3
source activate three-prime-env
for i in {1..22};
do
python subset_plink4QTLs_proc.py ${i} "Total"
done
for i in {1..22};
do
python subset_plink4QTLs_proc.py ${i} "Nuclear"
done
This added 2446 total snps and 6258 nuclear snps.
Cat and remove indels:
cat chr* > allChr.TotalQTL.LD.gene.ld
grep -v indel allChr.TotalQTL.LD.gene.ld > allChr.TotalQTL.LD.gene.ld_noIndel
cat chr* > allChr.NuclearQTL.LD.gene.ld
grep -v indel allChr.NuclearQTL.LD.gene.ld > allChr.NuclearQTL.LD.gene.ld_noIndel
Make these bed files:
makeAlloverlapbed_proc.py
#load files:
QTL_total=open("/project2/gilad/briana/threeprimeseq/data/ApaQTLs/TotalQTLs_uniq_50mb_GEU.txt", "r")
QTL_nuclear=open("/project2/gilad/briana/threeprimeseq/data/ApaQTLs/NuclearQTLs_uniq_50mb_GEU.txt", "r")
LD_total=open("/project2/gilad/briana/threeprimeseq/data/GWAS_overlap_processed/TotalApaQTL_LD/allChr.TotalQTL.LD.gene.ld_noIndel", "r")
LD_nuclear=open("/project2/gilad/briana/threeprimeseq/data/GWAS_overlap_processed/NuclearApaQTL_LD/allChr.NuclearQTL.LD.gene.ld_noIndel", "r")
outFile= open("/project2/gilad/briana/threeprimeseq/data/GWAS_overlap_processed/AllOverlapSnps.bed", "w")
#function for qtl to bed format
def qtl2bed(fqtl, fraction, fout=outFile):
for ln in fqtl:
snp, chrom, pos = ln.split("_")
start=int(pos)-1
end= int(pos)
fout.write("%s\t%d\t%d\tQTL_%s\n"%(chrom, start, end,fraction))
#function for ld to bed format
def ld2bed(fLD, fraction, fout=outFile):
for ln in fLD:
snpID=ln.split()[5]
snp, chrom, pos= snpID.split("_")
start=int(pos)-1
end=int(pos)
fout.write("%s\t%d\t%d\tLD_%s\n"%(chrom, start, end,fraction))
#I will run each of these for both fractions to get all of the snps in the out file.
qtl2bed(QTL_nuclear, "Nuclear")
qtl2bed(QTL_total, "Total")
ld2bed(LD_nuclear, "Nuclear")
ld2bed(LD_total, "Total")
outFile.close()
Sort this:
sort -k1,1 -k2,2n /project2/gilad/briana/threeprimeseq/data/GWAS_overlap_processed/AllOverlapSnps.bed > /project2/gilad/briana/threeprimeseq/data/GWAS_overlap_processed/AllOverlapSnps.sort.bed
Overlap with GWAS
I can use the overlapSNPsGWAS.py file I created in the previous rendition of this analysis but run it with these files.
run_overlapSNPsGWAS_proc.sh
#!/bin/bash
#SBATCH --job-name=run_overlapSNPsGWAS_proc
#SBATCH --account=pi-yangili1
#SBATCH --time=5:00:00
#SBATCH --output=run_overlapSNPsGWAS_proc.out
#SBATCH --error=run_overlapSNPsGWAS_proc.err
#SBATCH --partition=broadwl
#SBATCH --mem=10G
#SBATCH --mail-type=END
module load Anaconda3
source activate three-prime-env
python overlapSNPsGWAS.py "/project2/gilad/briana/threeprimeseq/data/GWAS_overlap_processed/AllOverlapSnps.sort.bed" "/project2/gilad/briana/threeprimeseq/data/GWAS_overlap_processed/AllSnps_GWASoverlapped.txt"
Total QTLs overlap: rs3117582 6:31620520
Total LD overlap:
Nuclear QTL overlap:
rs7206971 17:45425115
Nucelar LD overlapL
Are these eQTLs?
sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS 10.14.1
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] qvalue_2.12.0 forcats_0.3.0 stringr_1.4.0 dplyr_0.7.6
[5] purrr_0.2.5 readr_1.1.1 tidyr_0.8.1 tibble_1.4.2
[9] ggplot2_3.0.0 tidyverse_1.2.1 workflowr_1.2.0
loaded via a namespace (and not attached):
[1] tidyselect_0.2.4 reshape2_1.4.3 splines_3.5.1 haven_1.1.2
[5] lattice_0.20-35 colorspace_1.3-2 htmltools_0.3.6 yaml_2.2.0
[9] rlang_0.2.2 pillar_1.3.0 glue_1.3.0 withr_2.1.2
[13] modelr_0.1.2 readxl_1.1.0 bindrcpp_0.2.2 bindr_0.1.1
[17] plyr_1.8.4 munsell_0.5.0 gtable_0.2.0 cellranger_1.1.0
[21] rvest_0.3.2 evaluate_0.13 knitr_1.20 broom_0.5.0
[25] Rcpp_0.12.19 scales_1.0.0 backports_1.1.2 jsonlite_1.6
[29] fs_1.2.6 hms_0.4.2 digest_0.6.17 stringi_1.2.4
[33] grid_3.5.1 rprojroot_1.3-2 cli_1.0.1 tools_3.5.1
[37] magrittr_1.5 lazyeval_0.2.1 crayon_1.3.4 whisker_0.3-2
[41] pkgconfig_2.0.2 xml2_1.2.0 lubridate_1.7.4 assertthat_0.2.0
[45] rmarkdown_1.11 httr_1.3.1 rstudioapi_0.9.0 R6_2.3.0
[49] nlme_3.1-137 git2r_0.24.0 compiler_3.5.1