Last updated: 2020-02-01

Checks: 7 0

Knit directory: HHVtransmission/

This reproducible R Markdown analysis was created with workflowr (version 1.4.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20190318) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/.DS_Store
    Ignored:    analysis/.Rhistory
    Ignored:    data/.DS_Store
    Ignored:    docs/.DS_Store
    Ignored:    docs/figure/.DS_Store
    Ignored:    output/.DS_Store
    Ignored:    output/preprocess-model-data/.DS_Store

Untracked files:
    Untracked:  data/tmp/

Unstaged changes:
    Modified:   code/publish_all.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view them.

File Version Author Date Message
html a1d2e7b Bryan 2020-01-24 update with documentation
Rmd af2a4c1 Bryan 2019-12-30 all updates after co-author review; edits to tables/figs; ID75
html af2a4c1 Bryan 2019-12-30 all updates after co-author review; edits to tables/figs; ID75
Rmd c57800a Bryan 2019-11-18 updated general figures for viruses formatting
html c57800a Bryan 2019-11-18 updated general figures for viruses formatting
Rmd 72fca02 Bryan 2019-11-10 general statitisics update waddressing co-author comments
html 72fca02 Bryan 2019-11-10 general statitisics update waddressing co-author comments
html ce0f229 Bryan Mayer 2019-07-09 analysis through first-final draft
Rmd 3bc1e7c Bryan Mayer 2019-07-04 updated analysis through exposure overview
html 3bc1e7c Bryan Mayer 2019-07-04 updated analysis through exposure overview
Rmd 39e3dc0 Bryan Mayer 2019-06-07 update through transmission risk
html 39e3dc0 Bryan Mayer 2019-06-07 update through transmission risk
Rmd 1cb9a8b Bryan Mayer 2019-04-19 pre- removal of interpolation in exposure analysis
html 1cb9a8b Bryan Mayer 2019-04-19 pre- removal of interpolation in exposure analysis
Rmd c96d292 Bryan Mayer 2019-04-12 updated through exposure assessment
html c96d292 Bryan Mayer 2019-04-12 updated through exposure assessment
html 37f0c94 Bryan Mayer 2019-04-08 Build site.
html 2f57367 Bryan Mayer 2019-04-08 Build site.
html 5af6494 Bryan Mayer 2019-03-21 Build site.
Rmd 05626ad Bryan Mayer 2019-03-21 wflow_publish(c(“analysis/about.Rmd”, “analysis/index.Rmd”,

Here, we calculate some of the initial (pre-model) results from the infant cohort and exposure characteristcs. - Demographics - Initial survial curves - Exposure assessment

library(survival)
library(tidyverse)
library(conflicted)
library(kableExtra)
library(cowplot)
conflict_prefer("filter", "dplyr")
theme_set(
  theme_bw() +
    theme(panel.grid.minor = element_blank(),
          legend.position = "top")
)

source("code/plot_labels.R")
source("code/processing_functions.R")

exposure_data = read_csv("data/exposure_data.csv")
Parsed with column specification:
cols(
  FamilyID = col_character(),
  virus = col_character(),
  infant_wks = col_double(),
  infectious_1wk = col_double(),
  final_infant_wk = col_double(),
  infected = col_double(),
  momhiv = col_character(),
  final_exposure = col_double(),
  interpolate_idpar = col_character(),
  M = col_double(),
  S = col_double(),
  HH = col_double(),
  obs_infected = col_double(),
  final_wk = col_double(),
  outcome_time = col_double(),
  enrollment_age = col_double()
)
exposure_data_long = read_csv("data/exposure_data_long.csv")
Parsed with column specification:
cols(
  FamilyID = col_character(),
  virus = col_character(),
  infant_wks = col_double(),
  infectious_1wk = col_double(),
  final_infant_wk = col_double(),
  infected = col_double(),
  momhiv = col_character(),
  final_exposure = col_double(),
  interpolate_idpar = col_character(),
  obs_infected = col_double(),
  final_wk = col_double(),
  outcome_time = col_double(),
  enrollment_age = col_double(),
  idpar = col_character(),
  count = col_double(),
  interpolated = col_logical()
)
leg_plot = ggplot(data = exposure_data_long, aes(x = idpar, y = count, fill = factor(obs_infected))) +
  geom_tile() +
  scale_fill_manual("", values = infection_labels$colours, breaks = infection_labels$breaks,
                      labels = infection_labels$labels)
trans_legend = get_legend(leg_plot + theme(legend.position = "top"))

range_str = function(x, digits = 3) paste(round(range(x), digits), collapse = " - ")
IQR_range_str = function(x, digits = 3) paste(round(quantile(x, c(0.25, 0.75)), digits), collapse = " - ")

Demographics

Infant ages

exposure_data %>%
  select(FamilyID, enrollment_age) %>%
  distinct() %>%
  summarize(
        N = n(),
        enroll_median_age_days = median(enrollment_age),
        IQR = paste(quantile(enrollment_age, c(0.25, 0.75)), collapse = ", "),
        range_days = paste(range(enrollment_age), collapse = ", ")
        ) %>%
  kable() %>% kable_styling(full_width = F)
N enroll_median_age_days IQR range_days
32 2 1, 3 0, 9

Mom HIV

exposure_data %>% select(FamilyID, momhiv) %>% 
  distinct() %>%
  group_by(momhiv) %>%
  summarize(N = n()) %>% 
  kable() %>% kable_styling(full_width = F)
momhiv N
neg 15
pos 17

Survival analysis

exposure_data %>% 
  group_by(virus, FamilyID) %>% 
  summarize(obs_infected = max(infectious_1wk),
            is_infected = max(infected)) %>% group_by(virus) %>%
  summarize(
    total_infants = n_distinct(FamilyID),
    total_infected = sum(is_infected),
    total_outcome = sum(obs_infected)
    ) %>%
  kable() %>%
  kable_styling(full_width = F)
virus total_infants total_infected total_outcome
CMV 30 20 16
HHV-6 31 24 23
surv_data = exposure_data %>% 
  group_by(FamilyID, virus, momhiv, final_infant_wk) %>%
  summarize(
    infected = max(infected)
  )

surv_fit = surv_data %>%
  group_by(virus) %>%
  nest() %>%
  mutate(
    surv_mod = map(data, ~survfit(Surv(final_infant_wk, infected) ~ 1, data = .)),
    surv_mod_hiv = map(data, ~survfit(Surv(final_infant_wk, infected) ~ momhiv, data = .)),
    logrank = map_dbl(data, ~coin::pvalue(coin::logrank_test(Surv(final_infant_wk, infected) ~ factor(momhiv),
                                                             data = ., distribution = "exact")))
    ) %>%
  select(-data)

surv_fit %>%
  select(virus, logrank) %>%
  rename(`Mother HIV Log-rank` = logrank) %>%
  kable() %>% kable_styling(full_width = F)
virus Mother HIV Log-rank
CMV 0.9708864
HHV-6 0.3649318
surv_res = pmap_df(surv_fit, function(virus, surv_mod, surv_mod_hiv, logrank){
   broom::tidy(surv_mod) %>%
    mutate(strata = "Pooled") %>%
    bind_rows(broom::tidy(surv_mod_hiv)) %>%
    mutate(
      virus = virus,
      momhiv = str_remove_all(strata, "momhiv=")
      ) %>%
    bind_rows(crossing(virus = virus, time = -1e-12, estimate = 1, momhiv = c("Pooled", "neg", "pos")))
})
# NA censors recoded to 0 (occurs at time ~ 0)

surv_res %>%
  arrange(virus, momhiv, time) %>%
  mutate(n.censor = if_else(is.na(n.censor), 0, n.censor)) %>%
  ungroup() %>%
  mutate(virus = factor(virus, levels = c("HHV-6", "CMV"))) %>%
  ggplot(aes(x = time, y = 1 - estimate, colour = momhiv)) + 
  geom_step() +
  geom_point(aes(shape = n.censor > 0)) +
  scale_shape_manual(guide = F, values = c(-1, 3)) +
  scale_x_continuous("Weeks after infant birth", breaks = 0:10 * 10) +
  scale_y_continuous("Proportion infected", expand = c(0.01, 0)) +
  geom_vline(xintercept = 52, colour = "black", linetype = "dashed") +
  scale_color_discrete("", breaks = c("neg", "pos", "Pooled"), 
                     labels = c("Mother HIV-", "Mother HIV+", "Pooled")) +
  facet_wrap(~virus) +
  geom_text(data = mutate(ungroup(surv_fit), virus = factor(virus, levels = c("HHV-6", "CMV"))), 
            aes(label = str_c("p = ", round(logrank, 2))), 
            x = Inf, y = 0, colour = "black", vjust = -.2, hjust = 1.2) +
  theme(legend.position = "top")

Version Author Date
72fca02 Bryan 2019-11-10
c96d292 Bryan Mayer 2019-04-12
5af6494 Bryan Mayer 2019-03-21

Exposure Analysis

Overall

exposure_data_long %>% 
  subset(idpar != "HH") %>%
  group_by(virus, idpar) %>% 
  summarize(
    total = n(),
    total_observed = total - sum(interpolated),
    total_interpolate = stat_paste(sum(interpolated),  100*mean(interpolated), digits = 1)
  ) %>%
  mutate(`Exposure source` = factor(idpar, levels = c("S", "M"),
      labels = c("Secondary Children", "Mother"))) %>%
  select(virus, `Exposure source`, everything(), -idpar) %>%
  arrange(desc(virus), `Exposure source`) %>%
  write_csv("output/results-tables/supp_table1.csv") %>%
  kable() %>%
  kable_styling(full_width = F)
virus Exposure source total total_observed total_interpolate
HHV-6 Secondary Children 684 544 140.0 (20.5)
HHV-6 Mother 684 646 38.0 (5.6)
CMV Secondary Children 819 647 172.0 (21.0)
CMV Mother 819 767 52.0 (6.3)
exposure_data_summary = exposure_data_long %>%
  mutate(
    pos_count = count > 0
    ) %>%
  subset(!interpolated) %>%
  group_by(virus, FamilyID, obs_infected, idpar) %>%
  mutate(
    total_pos = sum(pos_count),
    pct_pos = 100 * mean(pos_count)
    ) %>%
  group_by(pct_pos, total_pos, add = T) %>%
  summarise_at(vars(count), list(~n(), mean = mean, median = median, maximum = max)) %>%
  rename(N = n)

plot_labels = exposure_data_summary %>%
  gather(stat, estimate, mean, maximum, pct_pos) %>%
  group_by(stat) %>%
  summarize(min_lim = min(estimate), max_lim = ceiling(max(estimate))) %>%
  left_join(tibble(stat = c("pct_pos", "mean", "maximum"), 
                   out_lab = c("Percent~Positive", "Mean~Log[10]~VL", "Max.~Log[10]~VL"))) %>%
  mutate(stat = factor(stat, levels = c("pct_pos", "mean", "maximum"))) %>%
  arrange(stat) %>%
  ungroup() %>%
  mutate(letter_code = 1:3)
Joining, by = "stat"
pl_exposure = map(plot_labels$stat %>% levels(), function(s){
  exposure_data_summary = exposure_data_summary %>%
    ungroup() %>%
    mutate(virus = factor(virus, levels = c("HHV-6", "CMV")))
  
  
  tmp_theme = theme(
    legend.position = "none",
    axis.title = element_text(size = 10),
    axis.text = element_text(size = 9)
  )
    
  pl_lab = subset(plot_labels, stat == s)
  out_label = pl_lab$out_lab[1]
  lower_limit = pl_lab$min_lim
  upper_limit = pl_lab$max_lim
    
  pl1 = exposure_data_summary %>%
    gather(stat, estimate, mean, maximum, pct_pos) %>%
    select(-median,-total_pos,-N) %>%
    spread(idpar, estimate) %>%
    filter(stat == s) %>%
    ggplot(aes(
      x = S,
      y = M,
      colour = factor(obs_infected)
    )) +
    geom_point() +
    geom_abline() +
    geom_point() +
    scale_colour_manual(values = c("#4393C3", "#D6604D")) +
    scale_y_continuous(parse(text = paste0("Mother~", out_label)),
                       limits = c(lower_limit, upper_limit)) +
    scale_x_continuous(parse(text = paste0("Secondary~Children~", out_label)),
                       limits = c(lower_limit, upper_limit)) +
    facet_wrap( ~ virus) +
    tmp_theme
  
  pl2 = exposure_data_summary %>%
    ungroup() %>%
    mutate(
      obs_infected = factor(obs_infected),
      idpar = fct_recode(
        fct_rev(idpar),
        "Secondary\nChildren" = "S",
        "Mother" = "M",
        "Household\nSum" = "HH"
      )
    ) %>%
    ggplot(aes_string(x = "idpar", y = s, colour = "obs_infected")) +
    geom_boxplot() +
    scale_colour_manual(values = c("#4393C3", "#D6604D")) +
    geom_point(position = position_dodge(width = 0.75)) +
    scale_y_continuous(parse(text = out_label), limits = c(lower_limit, upper_limit)) +
    xlab(parse(text = c(""))) +
    facet_wrap( ~ virus) +
    tmp_theme + theme(axis.text.x = element_text(size = 7))
  
    plot_grid(pl1, pl2, nrow = 1, labels = paste0("(",letters[c(pl_lab$letter_code, pl_lab$letter_code + 3)], ")"))
    
})

plot_grid(plot_grid(plotlist = pl_exposure, nrow = 3), trans_legend, nrow = 2, rel_heights = c(11, 1))

Version Author Date
c57800a Bryan 2019-11-18
72fca02 Bryan 2019-11-10
3bc1e7c Bryan Mayer 2019-07-04
39e3dc0 Bryan Mayer 2019-06-07
1cb9a8b Bryan Mayer 2019-04-19
c96d292 Bryan Mayer 2019-04-12
exposure_data_summary %>%
  subset(idpar != "HH") %>%
  group_by(virus, FamilyID, idpar) %>%
  gather(outcome, value, pct_pos, mean, maximum) %>%
  select(virus, FamilyID, idpar, outcome, value) %>%
  spread(idpar, value) %>%
  ungroup() %>%
  dplyr::mutate(
    fid = factor(FamilyID)
  ) %>%
  group_by(virus, outcome) %>%
  nest() %>%
  mutate(
    cor_test = map(data, ~cor.test(.x$M, .x$S), method = "Spearmen"),
    cor_res = map(cor_test, broom::tidy)
  ) %>%
  unnest(cor_res) %>%
  mutate(
    Endpoint = factor(outcome, levels = c("pct_pos", "mean", "maximum"),
                      labels = c("Pct. Positive", "Mean VL", "Maximum VL")),
    Estimate = stat_paste(estimate, conf.low, conf.high, digits = 2),
    p.value = round(p.value, 3)
  ) %>%
  ungroup() %>%
  select(virus, Endpoint, Estimate, p.value) %>%
  arrange(desc(virus), Endpoint) %>%
  write_csv("output/results-tables/supp_table2.csv") %>%
  kable(digits = 3) %>%
  kable_styling(full_width = F) %>%
  collapse_rows(1)
virus Endpoint Estimate p.value
HHV-6 Pct. Positive 0.30 (-0.06, 0.59) 0.095
Mean VL 0.33 (-0.03, 0.61) 0.074
Maximum VL 0.29 (-0.07, 0.59) 0.111
CMV Pct. Positive -0.04 (-0.40, 0.32) 0.818
Mean VL 0.06 (-0.31, 0.41) 0.752
Maximum VL 0.06 (-0.31, 0.41) 0.768
exposure_data_tests = 
  exposure_data_summary %>% 
  gather(stat, estimate, mean, maximum, pct_pos) %>%
  group_by(virus, stat, idpar) %>%
  mutate(obs_infected = factor(obs_infected)) %>%
  summarize(
    wilcox_pvalue =  coin::pvalue(coin::wilcox_test(estimate ~ obs_infected, distribution = "exact"))
  )

overall_summary = exposure_data_summary %>% 
  gather(stat, estimate, mean, maximum, pct_pos) %>%
  group_by(virus, stat, idpar, obs_infected) %>%
  summarize(
    median = median(estimate)
  ) %>%
  mutate(obs_infected = recode_factor(obs_infected, `1` = "Transmission", `0` = "No transmission", .ordered = T)) %>%
  spread(obs_infected, median) %>%
  mutate(Difference = `Transmission`-`No transmission`) %>%
  left_join(exposure_data_tests, by = c("virus", "stat", "idpar"))

overall_summary %>%
  ungroup() %>%
  mutate(
    wilcox_pvalue = as.character(round_away_0(wilcox_pvalue, 3, T)),
    Endpoint = factor(
      stat,
      levels = c("pct_pos", "mean", "maximum"),
      labels = c("Pct. Positive", "Mean VL", "Maximum VL")
    ),
    `Exposure source` = factor(idpar, levels = c("S", "M", "HH"),
      labels = c("Secondary child", "Mother", "Household Sum"))
    ) %>%
  select(virus, Endpoint, `Exposure source`, everything(), -idpar, -stat) %>%
  mutate_if(is.numeric, round, 2) %>% 
  arrange(desc(virus), Endpoint, `Exposure source`) %>%
  write_csv("output/results-tables/supp_table3.csv") %>%
  kable() %>%
  kable_styling(full_width = F) %>%
  collapse_rows(columns = 1:2)
virus Endpoint Exposure source Transmission No transmission Difference wilcox_pvalue
HHV-6 Pct. Positive Secondary child 100.00 94.50 5.50 0.003
Mother 76.00 40.06 35.94 0.105
Household Sum 100.00 98.91 1.09 0.008
Mean VL Secondary child 4.08 3.07 1.00 0.007
Mother 2.02 1.05 0.97 0.102
Household Sum 4.12 3.41 0.71 0.006
Maximum VL Secondary child 4.63 3.68 0.95 0.020
Mother 3.34 3.00 0.34 0.147
Household Sum 4.63 3.90 0.72 0.016
CMV Pct. Positive Secondary child 100.00 94.05 5.95 0.230
Mother 5.41 2.18 3.22 0.622
Household Sum 100.00 95.30 4.70 0.249
Mean VL Secondary child 3.46 3.05 0.41 0.179
Mother 0.13 0.05 0.08 0.684
Household Sum 3.47 3.05 0.42 0.179
Maximum VL Secondary child 4.42 4.34 0.08 0.377
Mother 1.11 2.49 -1.38 0.653
Household Sum 4.43 4.34 0.09 0.400

Household composition

Household sum composition was determined and reported by taking the mean proportion over measurements within a household. The summary across the households uses median and IQR to match the box plot statistics.

hh_summary = exposure_data %>%
  filter(HH > 0) %>%
  mutate(   
    S_pctHH = if_else(HH == 0, 0, 100 * (10^S/10^HH)),
    M_pctHH = if_else(HH == 0, 0, 100 * (10^M/10^HH))
    ) %>%
  group_by(virus, FamilyID, obs_infected) %>%
  summarise_at(vars(S_pctHH, M_pctHH), list(mean = mean, median = median))

hh_summary %>%
  ungroup() %>%
  select(-obs_infected) %>%
  gather(stat, est, -virus, -FamilyID) %>%
  group_by(virus, stat) %>%
  summarize_if(is.double, list(mean = mean, median = median, IQR = IQR_range_str, range = range_str)) %>%
  ungroup() %>%
  mutate_if(is.double, round, digits = 2) %>%
  filter(str_detect(stat, "mean")) %>%
  mutate(
    stat = substr(stat, 1, 1)
  ) %>%
  rename(`Household member` = stat) %>%
  rename_at(vars(-IQR), list(str_to_title)) %>%
  kable(caption = "Percent household composition") %>% kable_styling(full_width = F)
Percent household composition
Virus Household Member Mean Median IQR Range
CMV M 7.27 0.32 0.094 - 5.426 0.004 - 66.421
CMV S 92.73 99.68 94.574 - 99.906 33.579 - 99.996
HHV-6 M 15.42 8.76 1.16 - 19.477 0.01 - 99.782
HHV-6 S 84.58 91.24 80.523 - 98.84 0.218 - 99.99
hh_summary %>%
  ungroup() %>%
  mutate(virus = factor(virus, levels = c("HHV-6", "CMV"))) %>%
  ggplot(aes(x = virus, y = S_pctHH_mean)) +
  geom_boxplot() +
  geom_point(aes(colour = factor(obs_infected))) +
  xlab("") +
  scale_colour_manual("", values = infection_labels$colours, breaks = infection_labels$breaks,
                      labels = infection_labels$labels) +
  ylab("Percent of household shedding attributable to secondary children") 

Version Author Date
72fca02 Bryan 2019-11-10
3bc1e7c Bryan Mayer 2019-07-04
1cb9a8b Bryan Mayer 2019-04-19
c96d292 Bryan Mayer 2019-04-12

Interpolated exposure

In the sensitivity analysis, we’d like to assess the interpolation. All of the summary statistical analysis is limited to the observed exposures. Assuming the interpolation was unbiased, the precision in tests could still be artificially inflated without some correction. Because linear interpolation is used, the mean and maximum exposure estimates should be largely unaffected. However, the percent positive estimate may not be precise without a larger sample size.

exposure_interpolated_summary = exposure_data_long %>%
  mutate(
    pos_count = count > 0
    ) %>%
  group_by(virus, FamilyID, obs_infected, idpar) %>%
  mutate(
    interpolated_pct = 100*mean(interpolated),
    total_pos = sum(pos_count),
    pct_pos = 100 * mean(pos_count)
    ) %>%
  group_by(pct_pos, total_pos, interpolated_pct, add = T) %>%
  dplyr::summarise_at(vars(count), list(~n(), mean = mean, median = median, maximum = max))

exposure_interpolated_summary %>%
  ungroup() %>%
  mutate(
    idpar = fct_recode(fct_rev(idpar), 
                       "Secondary\nChildren" = "S", "Mother" = "M", "Household\nSum" = "HH")
    ) %>%
  ggplot(aes(x = idpar, y = interpolated_pct)) +
  geom_boxplot() +
  geom_point() +
  xlab("") +
  ylab("Percent of weekly exposures interpolated") +
  facet_wrap(~virus)

Version Author Date
72fca02 Bryan 2019-11-10
3bc1e7c Bryan Mayer 2019-07-04
b8fb749 Bryan Mayer 2019-06-07
exposure_interpolated_summary %>% 
  ungroup() %>%
  subset(idpar != "HH") %>%
  gather(stat, estimate, mean, maximum, pct_pos) %>%
  mutate(
    idpar = fct_recode(fct_rev(idpar), 
                       "Secondary\nChildren" = "S", "Mother" = "M"),
    stat = fct_recode(fct_rev(stat), 
                       "% positive (weekly)" = "pct_pos", "Mean VL" = "mean", "Maximum VL" = "maximum"),
    ) %>%
  ggplot(aes(x = interpolated_pct, y = estimate, colour = factor(obs_infected))) +
  geom_point() +
  ylab("") +
  xlab("Percent of weekly exposures interpolated") +
  facet_grid(stat ~ virus+idpar, scales = "free_y", switch = "y") +
  scale_colour_manual("", values = infection_labels$colours, breaks = infection_labels$breaks,
                      labels = infection_labels$labels) +
  theme(strip.placement = "outside")

Version Author Date
72fca02 Bryan 2019-11-10
3bc1e7c Bryan Mayer 2019-07-04
b8fb749 Bryan Mayer 2019-06-07

sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS Catalina 10.15.2

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] cowplot_1.0.0    kableExtra_1.1.0 conflicted_1.0.4 forcats_0.4.0   
 [5] stringr_1.4.0    dplyr_0.8.3      purrr_0.3.3      readr_1.3.1     
 [9] tidyr_1.0.0      tibble_2.1.3     ggplot2_3.2.1    tidyverse_1.3.0 
[13] survival_3.1-7  

loaded via a namespace (and not attached):
 [1] httr_1.4.1         jsonlite_1.6       viridisLite_0.3.0 
 [4] splines_3.6.1      modelr_0.1.5       assertthat_0.2.1  
 [7] stats4_3.6.1       highr_0.8          selectr_0.4-1     
[10] coin_1.3-1         cellranger_1.1.0   yaml_2.2.0        
[13] pillar_1.4.2       backports_1.1.5    lattice_0.20-38   
[16] glue_1.3.1         digest_0.6.23      rvest_0.3.5       
[19] sandwich_2.5-1     colorspace_1.4-1   plyr_1.8.4        
[22] htmltools_0.4.0    Matrix_1.2-17      pkgconfig_2.0.3   
[25] broom_0.5.2        haven_2.2.0        mvtnorm_1.0-11    
[28] scales_1.1.0       webshot_0.5.1      whisker_0.4       
[31] git2r_0.26.1       generics_0.0.2     farver_2.0.1      
[34] ellipsis_0.3.0     TH.data_1.0-10     withr_2.1.2       
[37] lazyeval_0.2.2     cli_1.1.0          magrittr_1.5      
[40] crayon_1.3.4       readxl_1.3.1       memoise_1.1.0     
[43] evaluate_0.14      fs_1.3.1           MASS_7.3-51.4     
[46] nlme_3.1-142       xml2_1.2.2         tools_3.6.1       
[49] hms_0.5.3          multcomp_1.4-10    lifecycle_0.1.0   
[52] matrixStats_0.55.0 munsell_0.5.0      reprex_0.3.0      
[55] compiler_3.6.1     rlang_0.4.2        grid_3.6.1        
[58] rstudioapi_0.10    labeling_0.3       rmarkdown_1.17    
[61] codetools_0.2-16   gtable_0.3.0       DBI_1.0.0         
[64] reshape2_1.4.3     R6_2.4.1           zoo_1.8-6         
[67] lubridate_1.7.4    knitr_1.25         workflowr_1.4.0   
[70] libcoin_1.0-5      rprojroot_1.3-2    modeltools_0.2-22 
[73] stringi_1.4.3      parallel_3.6.1     Rcpp_1.0.3        
[76] vctrs_0.2.2        dbplyr_1.4.2       tidyselect_0.2.5  
[79] xfun_0.10