Last updated: 2019-07-26

Checks: 5 1

Knit directory: HHVtransmission/

This reproducible R Markdown analysis was created with workflowr (version 1.3.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20190318) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/.DS_Store
    Ignored:    analysis/.Rhistory
    Ignored:    data/.DS_Store
    Ignored:    docs/.DS_Store
    Ignored:    docs/figure/.DS_Store
    Ignored:    docs/figure/general-statistics.Rmd/.DS_Store
    Ignored:    docs/figure/transmission-risk.Rmd/.DS_Store

Untracked files:
    Untracked:  analysis/transmission-risk-sensitivity.Rmd
    Untracked:  model_data.RData

Unstaged changes:
    Modified:   analysis/transmission-risk.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view them.

File Version Author Date Message
Rmd e6ddfc5 Bryan Mayer 2019-07-09 analysis through first-final draft
html e6ddfc5 Bryan Mayer 2019-07-09 analysis through first-final draft
Rmd 220afdb Bryan Mayer 2019-07-08 finished transmission risk
html 220afdb Bryan Mayer 2019-07-08 finished transmission risk
Rmd aac4ccb Bryan Mayer 2019-06-06 first go at transmission risk
html aac4ccb Bryan Mayer 2019-06-06 first go at transmission risk

This is the main analysis and results for the manuscript. For sensitivity analysis due to exposure interpolation, see the analysis of model sensitivity to interpolation.

Setup

library(tidyverse)
library(conflicted)
library(kableExtra)
library(cowplot)
conflict_prefer("filter", "dplyr")
source("code/risk_fit_functions.R")
source("code/processing_functions.R")

Set up model data. Only pre-processing is removing left censored family starting at week 8.

theme_set(
  theme_bw() +
    theme(panel.grid.minor = element_blank(),
          legend.position = "top")
)

exposure_data = read_csv("data/exposure_data.csv") %>%
  subset()
Parsed with column specification:
cols(
  FamilyID = col_character(),
  virus = col_character(),
  infant_wks = col_double(),
  infectious_1wk = col_double(),
  final_infant_wk = col_double(),
  infected = col_double(),
  momhiv = col_character(),
  final_exposure = col_double(),
  interpolate_idpar = col_character(),
  M = col_double(),
  S = col_double(),
  HH = col_double(),
  obs_infected = col_double(),
  final_wk = col_double(),
  outcome_time = col_double(),
  enrollment_age = col_double()
)
exposure_data_long = read_csv("data/exposure_data_long.csv") %>%
  mutate(exposure = if_else(count == 1, 0, 10^(count))) %>%
  subset()
Parsed with column specification:
cols(
  FamilyID = col_character(),
  virus = col_character(),
  infant_wks = col_double(),
  infectious_1wk = col_double(),
  final_infant_wk = col_double(),
  infected = col_double(),
  momhiv = col_character(),
  final_exposure = col_double(),
  interpolate_idpar = col_character(),
  obs_infected = col_double(),
  final_wk = col_double(),
  outcome_time = col_double(),
  enrollment_age = col_double(),
  idpar = col_character(),
  count = col_double(),
  interpolated = col_logical()
)
exposure_data_long %>%
  subset(idpar != "HH") %>%
  group_by(virus, FamilyID, idpar) %>%
  mutate(any_interp = any(interpolated)) %>%
  subset(any_interp) %>%
  summarize(
    first_obs = min(which(is.na(interpolate_idpar)))
  ) %>%
  subset(first_obs > 2)
# A tibble: 2 x 4
# Groups:   virus, FamilyID [2]
  virus FamilyID idpar first_obs
  <chr> <chr>    <chr>     <int>
1 CMV   AD       S             8
2 HHV-6 AD       S             8
model_data = exposure_data %>% mutate(cohort = "All") %>% subset(FamilyID != "AD")
model_data_long = exposure_data_long %>% mutate(cohort = "All")  %>% subset(FamilyID != "AD")

save(model_data, model_data_long, file = "data/model_data.RData")

Modeling

Model setup

The probability of being uninfected after a single, weekly exposure can written as following:

\[ s(i) = exp(-\beta_0 - \beta_{E}E_i) \] or \[ s(i) = exp(-\lambda(i)) \]

Instead of continuous time, we consider discretized time denoted by \(i \in \{1, ..., n+1\}\) for n+1 weeks of exposures (with n survived exposures). The likelihood follows for a single, infected participant (note that in discrete time we don’t apply an instantaneous hazard but use 1 - S(n) for the infectious week):

\[ L_j(n_j+1) = \prod_{i = 1}^{n_j} s_j(i) * (1-s_j(n_j+1))\]

for the j\(^{th}\) participant with a unique set of total exposures. We next setup the log-likelihood for the population (m participants) and use \(\Delta\) to denote an observed infection.

\[ \sum_{j = 1}^{m} log L_j(n_j) = \sum_{j = 1}^{m}\sum_{i = 1}^{n_j} log(s_j(i)) + \sum_{j = 1}^{m} \Delta_j * log(1-s_j(n_j+1))\]

The following assumptions are used: at-risk individuals are independent and the risk associated with a weekly exposures is unique from other exposures (i.e., non-infectious exposure weeks are exchangeable). From this formulation, we can find the maximum likelihood estimators for the parameters by minimizing the negative log likelihood. Both parameters are solved numerically.

The null model has the following form for weekly risk:

\[ s_0(i) = exp(-\beta_0) \]

I.e., risk is constant and not affected by household exposure. The null model has a simplified log-likelihood

\[ \sum_{j = 1}^{m} log L_j(n_j) = -\beta_0 \sum_{j = 1}^{m}n_j + log(1-exp(-\beta_0)) \sum_{j = 1}^{m} \Delta_j \]

with closed-form solution for the null risk

\[\hat{\beta_0} = -log(1 - \frac{\sum_{j = 1}^{m} \Delta_j}{\sum_{j = 1}^{m}n_j})\]

Run models

  • Null model is just constant risk model.
  • First set of fitted models are the marginal models
  • Second set is the combined M + S mode
# note negative loglik is calculated
null_risk_mod = model_data %>% 
  group_by(virus, FamilyID) %>%
  summarize(
    infected = max(infectious_1wk),
    surv_weeks = max(c(0, infant_wks[which(infectious_1wk == 0)]))
  ) %>%
  group_by(virus) %>%
  summarize(
    null_beta = -log(1-sum(infected)/sum(surv_weeks)),
    null_loglik = null_beta * sum(surv_weeks) - log(1-exp(-null_beta)) * sum(infected)
  )
risk_mod = model_data_long %>%
  group_by(virus, idpar, cohort) %>%
  nest() %>%
  mutate(
    likdat = map(data, create_likdat),
    total = map_dbl(data, ~n_distinct(.x$FamilyID)), 
    total_infected = map_dbl(data, ~sum(.x$infectious_1wk)),
    fit_modNM = map(likdat,  ~optim(c(-12, -3), surv_logLik, likdat = .x)),
    fit_modBFGS = map(likdat,  ~optim(c(-12, -3), surv_logLik, likdat = .x,  method = "BFGS")),
    #fit_modE = map(likdat, ~optimize(surv_logLikE, c(-20, 0), likdat = .x)),
    fit_resNM = map(fit_modNM, tidy_fits),
    fit_resBFGS = map(fit_modBFGS, tidy_fits)
  ) 

# using both exposures
risk_mod_both = model_data %>%
  group_by(virus, cohort) %>%
  nest() %>%
  mutate(
    likdat = map(data, create_likdat2),
    total = map_dbl(data, ~n_distinct(.x$FamilyID)), 
    total_infected = map_dbl(data, ~sum(.x$infectious_1wk)),
    fit_modNM = map(likdat,  ~optim(c(-12, -3, -3), surv_logLik_2E, likdat = .x)),
    fit_modBFGS = map(likdat,  ~optim(c(-12, -3, -3), surv_logLik_2E, likdat = .x,  
                                      method = "BFGS")),
    fit_resNM = map(fit_modNM, tidy_fits2),
    fit_resBFGS = map(fit_modBFGS, tidy_fits2)
  ) 

NM method doesn’t do well with boundary cases but BFGS is a bit overzealous at those. For CMV, when the logliks are equivalent, BFGS tends to selects a zero; for the combined model, BFGS finds a better fit (with 0 for betaS). For HHV-6, NM finds better fits amidst signal.

risk_mod %>% 
  rename(NM = fit_resNM, BFGS = fit_resBFGS) %>%
  unnest(BFGS, .sep = "_") %>%
  unnest(NM, .sep = "_") %>% 
  select(virus, idpar, contains("beta"), contains("loglik")) %>%
  group_by(virus, idpar) %>%
  select(virus, idpar, BFGS_beta0, NM_beta0, BFGS_betaE, NM_betaE, BFGS_loglik, NM_loglik) %>%
  mutate_if(is.numeric, format, digits = 3) %>%
  kable(caption = "Comparing optimization results from marginal models (BFGS vs. Nelder-Mead (NM))", 
        digits = 3) %>%
  kable_styling(full_width = F)
`mutate_if()` ignored the following grouping variables:
Columns `virus`, `idpar`
Comparing optimization results from marginal models (BFGS vs. Nelder-Mead (NM))
virus idpar BFGS_beta0 NM_beta0 BFGS_betaE NM_betaE BFGS_loglik NM_loglik
CMV S 0.0194 0.0198 0 1.01e-09 74.1 74.1
HHV-6 S 0.035 0.0288 0 1.36e-07 95.7 92.7
CMV M 0.0194 0.0194 0 3.25e-10 74.1 74.1
HHV-6 M 0.035 0.0296 0 7.61e-06 95.7 92
CMV HH 0.0194 0.0198 0 1.01e-09 74.1 74.1
HHV-6 HH 0.035 0.0267 0 1.69e-07 95.7 92.6
risk_mod_both %>% 
  rename(NM = fit_resNM, BFGS = fit_resBFGS) %>%
  unnest(BFGS, .sep = "_") %>%
  unnest(NM, .sep = "_") %>% 
  select(virus, contains("beta"), contains("loglik"), -contains("betaE")) %>%
  group_by(virus) %>%
  select(virus, BFGS_beta0, NM_beta0, 
         BFGS_betaM, NM_betaM, 
         BFGS_betaS, NM_betaS, 
         BFGS_loglik, NM_loglik) %>%
  mutate_if(is.numeric, format, digits = 3) %>%
  kable(caption = "Comparing optimization results from full model (BFGS vs. Nelder-Mead (NM))",
        digits = 3) %>%
  kable_styling(full_width = F)
`mutate_if()` ignored the following grouping variables:
Column `virus`
Comparing optimization results from full model (BFGS vs. Nelder-Mead (NM))
virus BFGS_beta0 NM_beta0 BFGS_betaM NM_betaM BFGS_betaS NM_betaS BFGS_loglik NM_loglik
CMV 0.0194 0.0184 8.77e-09 3.15e-06 0 1.73e-08 74.1 74.4
HHV-6 0.035 0.0259 1.04e-13 7.22e-06 0 8.36e-08 95.7 90.9

Model results

marginal_results = risk_mod %>%
  group_by(virus, idpar) %>%
  nest() %>%
  left_join(null_risk_mod, by = c("virus"))%>%
  mutate(
    fit_res = if_else(virus == "CMV", map(data, unnest, fit_resBFGS),
                      map(data, unnest, fit_resNM))
  ) %>%
  unnest(fit_res) %>%
  mutate(
    LLR_stat = 2 * (null_loglik - loglik),
    pvalue = pchisq(LLR_stat, 1, lower.tail = F)
  ) %>%
  select(-contains("dat"), -contains("fit")) %>%
  arrange(virus)

risk_mod_loglik = marginal_results %>%
  subset(idpar != "HH") %>%
  select(virus, idpar, loglik, betaE) %>%
  gather(outcome, value, loglik, betaE) %>%
  unite(mod_res, outcome, idpar) %>%
  spread(mod_res, value)

combined_results = risk_mod_both %>%
  group_by(virus) %>%
  nest() %>%
  mutate(
    fit_res = if_else(virus == "CMV", map(data, unnest, fit_resBFGS),
                      map(data, unnest, fit_resNM))
  ) %>%
  unnest(fit_res) %>%
  select(-contains("fit"), -contains("data"), -contains("dat")) %>%
  left_join(risk_mod_loglik, by = c("virus")) %>%
  left_join(null_risk_mod, by = c("virus")) %>%
  mutate(
    LLR_stat_overall = 2 * (null_loglik - loglik),
    pvalue_overall = pchisq(LLR_stat_overall, 2, lower.tail = F),
    LLR_statM = 2 * (loglik_S - loglik),
    pvalueM = pchisq(LLR_statM, 1, lower.tail = F),
    LLR_statS = 2 * (loglik_M - loglik),
    pvalueS = pchisq(LLR_statS, 1, lower.tail = F)
    ) %>%
  arrange(virus)
options(knitr.kable.NA = '')

full_results = marginal_results %>%
  gather(parameter, estimate, null_beta, beta0, betaE) %>%
  bind_rows(
    combined_results %>% gather(parameter, estimate, beta0, betaM, betaS) %>%
      mutate(
        idpar = "CM",
        pvalue = if_else(parameter == "betaM", pvalue_overall, NA_real_),
      )
  ) %>%
  mutate(
    pvalue = if_else(parameter %in% c("null_beta", "beta0"), NA_real_, pvalue),
    idpar = if_else(parameter == "null_beta", "Constant", idpar),
    model = factor(idpar, 
                   levels = c("Constant", "S", "M", "HH", "CM"),
                   labels = c("Constant risk", "Secondary child", "Mother",
                              "Household sum", "Combined model")
    ),
    parameter = case_when(
      parameter == "null_beta" ~ "beta0",
      parameter == "betaE" ~ str_c("beta", idpar),
      TRUE ~ parameter
    ),
    estimate = if_else(estimate < 1e-25, 0, estimate)
  ) %>%
  select(virus, model, parameter, estimate, pvalue) %>%
  distinct() 


full_results %>%
  arrange(virus, model) %>%
  ungroup() %>%
  mutate(
    pvalue = clean_pvalues(pvalue, sig_alpha = 0)
  ) %>%
  mutate_if(is.numeric, format, digits = 3) %>%
  kable(digits = 3) %>%
  kable_styling(full_width = F) %>%
  collapse_rows(1:2, valign = "top")
virus model parameter estimate pvalue
CMV Constant risk beta0 1.98e-02
Secondary child beta0 1.94e-02
betaS 0.00e+00 0.939
Mother beta0 1.94e-02
betaM 0.00e+00 0.939
Household sum beta0 1.94e-02
betaHH 0.00e+00 0.939
Combined model beta0 1.94e-02
betaM 8.77e-09 0.997
betaS 0.00e+00
HHV-6 Constant risk beta0 3.63e-02
Secondary child beta0 2.88e-02
betaS 1.36e-07 0.014
Mother beta0 2.96e-02
betaM 7.61e-06 0.006
Household sum beta0 2.67e-02
betaHH 1.69e-07 0.012
Combined model beta0 2.59e-02
betaM 7.22e-06 0.008
betaS 8.36e-08
id_calc = function(b0, bE, prob){
  (-log(1-prob) - b0)/(bE)
}

beta0_ests = full_results %>%
  subset(model != "Constant risk" & parameter == "beta0") %>%
  select(virus, model, estimate) %>%
  rename(beta0 = estimate)

full_results %>%
  subset(parameter != "beta0" & model != "Household sum" & virus == "HHV-6") %>%
  select(-pvalue) %>%
  group_by(virus, model) %>%
  left_join(beta0_ests, by = c("virus", "model")) %>%
  mutate(
    exposure_source = factor(case_when(
      parameter == "betaS" ~ "Secondary Child",
      parameter == "betaM" ~ "Mother"
    ), levels = c("Secondary Child", "Mother")),
    ID25 = id_calc(beta0, estimate, 0.25),
    ID50 = id_calc(beta0, estimate, 0.5),
    ID80 = id_calc(beta0, estimate, 0.8)
  ) %>%
  ungroup() %>%
  mutate_if(is.numeric, log10) %>%
  mutate(constant_risk = 100*(1-exp(-10^beta0))) %>%
  select(-estimate, -beta0, -parameter) %>%
  arrange(virus, model, exposure_source) %>%
  kable(digits = 2) %>%
  kable_styling(full_width = F) %>%
  collapse_rows(1:2, valign = "top") %>%
  add_header_above(c(" " = 3, "Infectious dose (ID)" = 3, ""))
Infectious dose (ID)
virus model exposure_source ID25 ID50 ID80 constant_risk
HHV-6 Secondary child Secondary Child 6.28 6.69 7.06 2.83
Mother Mother 4.53 4.94 5.32 2.92
Combined model Secondary Child 6.50 6.90 7.28 2.56
Mother 4.56 4.97 5.34 2.56
exposure_max = exposure_data_long %>%
  subset(idpar != "HH") %>%
  group_by(virus, idpar) %>%
  summarize(
    max_exposure = max(exposure)
  )

risk_data = exposure_data_long %>%
  subset(idpar != "HH") %>%
  mutate(
    exposure_cat = floor(count) + 0.5
  ) %>%
  group_by(idpar, virus, exposure_cat) %>%
  summarize(
    total_exposures = n(),
    total_infected = sum(infectious_1wk),
    risk = mean(infectious_1wk)
  )

risk_grid = exposure_data %>%
  mutate(
    exposure_S = floor(S) + 0.5,
    exposure_M = floor(M) + 0.5
  ) %>%
  group_by(virus, exposure_S, exposure_M) %>%
  summarize(
    total_exposures = n(),
    total_infected = sum(infectious_1wk),
    risk = mean(infectious_1wk)
  )

risk_prediction_both = combined_results %>%
  gather(parameter, est, betaM, betaS) %>%
  mutate(idpar = str_remove(parameter, "beta")) %>%
  left_join(exposure_max, by = c("virus", "idpar")) %>%
  group_by(virus, idpar) %>%
  nest() %>%
  mutate(
    pred_res = map(data, ~with(.x, tibble(
      exposure = seq(0, log10(max_exposure), length = 100),
      risk = 1 - exp(-beta0 - est * 10^exposure)
    )))
  ) %>%
  unnest(pred_res) 

dr_plot = risk_data  %>%
  subset(virus == "HHV-6") %>%
  ggplot(aes(x = exposure_cat, y = risk)) +
  geom_bar(stat = "identity", fill = "grey50") +
  geom_line(data = subset(risk_prediction_both, virus == "HHV-6"),
            aes(x = exposure), size = 1.25) +
  scale_y_continuous("Estimated weekly risk of HHV-6 infection", breaks = 0:4/4) +
  scale_x_continuous(expression(paste("Log"[10], " HHV-6 VL (DNA copies/swab)")),
                     breaks = 0:6+0.5,
                     labels = paste(0:6, 1:7, sep = "-")) +
  facet_grid(.~idpar, labeller = as_labeller(c('S' = "Secondary Child", 'M' = "Mother"))) +
  theme(legend.position = "top")

exposure_heat = risk_grid %>%
  subset(virus == "HHV-6") %>%
  ggplot(aes(x = exposure_S, y = exposure_M, fill = total_exposures, 
             label = paste(total_infected, total_exposures, sep = "/"))) +
  geom_tile() +
  #geom_label(label.padding = unit(0.1, "lines"), label.size = 0, fill = "white") +
  geom_text(fontface = "bold", colour = "white", size = 3.5) +
  viridis::scale_fill_viridis("Total exposures", option = "viridis") +
  scale_y_continuous(expression(paste("Mother log"[10], " VL (DNA copies/swab)")), 
                     breaks = 0:6+0.5,
                     labels = paste(0:6, 1:7, sep = "-")) +
  scale_x_continuous(expression(paste("Secondary child log"[10], " VL (DNA copies/swab)")),
                     breaks = 0:6+0.5,
                     labels = paste(0:6, 1:7, sep = "-")) +
  theme_classic() +
  theme(legend.position = "bottom",
        legend.title = element_text(size = 8),
        legend.text = element_text(size = 8),
        legend.key.width = unit(0.75, "cm"))

  
risk_heat = crossing(
  virus = "HHV-6",
  exposure_S = seq(0, 
                   log10(subset(exposure_max, virus == "HHV-6" & idpar == "S")$max_exposure)+0.1,
                   length = 100),
  exposure_M = seq(0, 
                   log10(subset(exposure_max, virus == "HHV-6" & idpar == "M")$max_exposure)+0.1,
                   length = 100)
) %>%
  left_join(combined_results, by = "virus") %>%
  mutate(
    risk =  1 - exp(-beta0 - betaS * 10^exposure_S - betaM * 10^exposure_M)
  ) %>%
  ggplot(aes(x = exposure_S, y = exposure_M, fill = pmin(risk, 0.25))) +
  geom_tile() +
  scale_y_continuous(expression(paste("Mother log"[10], " VL (DNA copies/swab)")), 
                     breaks = 1:7) +
  scale_x_continuous(expression(paste("Secondary child log"[10], " VL (DNA copies/swab)")),
                     breaks = 1:7) +
  scale_fill_distiller("Weekly infection prob.", palette = "RdYlBu",  breaks= c(0:5/20),
                        labels = c(0:4/20, " >0.25")) +
  geom_text(data = subset(risk_grid, virus == "HHV-6"), aes(label = round(risk, 2)), 
            fontface = "bold", colour = "black") +
  theme_classic() +
  theme(legend.position = "bottom",
        legend.title = element_text(size = 8),
        legend.text = element_text(size = 8),
        legend.key.width = unit(0.75, "cm"))

plot_grid(dr_plot,
  plot_grid(exposure_heat, risk_heat, nrow = 1, labels = c("B", "C"), vjust = 1),
  nrow = 2, labels = "A")

Version Author Date
220afdb Bryan Mayer 2019-07-08

sessionInfo()
R version 3.6.0 (2019-04-26)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS Mojave 10.14.6

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] cowplot_0.9.4    kableExtra_1.1.0 conflicted_1.0.3 forcats_0.4.0   
 [5] stringr_1.4.0    dplyr_0.8.1      purrr_0.3.2      readr_1.3.1     
 [9] tidyr_0.8.3      tibble_2.1.3     ggplot2_3.1.1    tidyverse_1.2.1 

loaded via a namespace (and not attached):
 [1] tidyselect_0.2.5   xfun_0.7           reshape2_1.4.3    
 [4] haven_2.1.0        lattice_0.20-38    vctrs_0.1.0       
 [7] colorspace_1.4-1   generics_0.0.2     htmltools_0.3.6   
[10] viridisLite_0.3.0  yaml_2.2.0         utf8_1.1.4        
[13] rlang_0.4.0        pillar_1.4.1       glue_1.3.1        
[16] withr_2.1.2        selectr_0.4-1      RColorBrewer_1.1-2
[19] modelr_0.1.4       readxl_1.3.1       plyr_1.8.4        
[22] munsell_0.5.0      gtable_0.3.0       workflowr_1.3.0   
[25] cellranger_1.1.0   rvest_0.3.4        evaluate_0.14     
[28] memoise_1.1.0      labeling_0.3       knitr_1.23        
[31] fansi_0.4.0        highr_0.8          broom_0.5.2       
[34] Rcpp_1.0.1         scales_1.0.0       backports_1.1.4   
[37] webshot_0.5.1      jsonlite_1.6       fs_1.3.1          
[40] gridExtra_2.3      hms_0.4.2          digest_0.6.19     
[43] stringi_1.4.3      grid_3.6.0         rprojroot_1.3-2   
[46] cli_1.1.0          tools_3.6.0        magrittr_1.5      
[49] lazyeval_0.2.2     zeallot_0.1.0      crayon_1.3.4      
[52] whisker_0.3-2      pkgconfig_2.0.2    xml2_1.2.0        
[55] lubridate_1.7.4    viridis_0.5.1      assertthat_0.2.1  
[58] rmarkdown_1.13     httr_1.4.0         rstudioapi_0.10   
[61] R6_2.4.0           nlme_3.1-140       git2r_0.25.2      
[64] compiler_3.6.0