Overview

Dataset statistics

Number of variables40
Number of observations98052
Missing cells0
Missing cells (%)0.0%
Duplicate rows0
Duplicate rows (%)0.0%
Total size in memory11.6 MiB
Average record size in memory124.0 B

Variable types

Numeric10
Boolean20
Categorical10

Warnings

number_emergency is highly skewed (γ1 = 22.71023391) Skewed
df_index has unique values Unique
num_procedures has 44574 (45.5%) zeros Zeros
number_outpatient has 81679 (83.3%) zeros Zeros
number_emergency has 86845 (88.6%) zeros Zeros
number_inpatient has 64633 (65.9%) zeros Zeros

Reproduction

Analysis started2021-05-05 21:26:31.501435
Analysis finished2021-05-05 21:27:10.019817
Duration38.52 seconds
Software versionpandas-profiling v2.11.0
Download configurationconfig.yaml

Variables

df_index
Real number (ℝ≥0)

UNIQUE

Distinct98052
Distinct (%)100.0%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean51115.77261
Minimum1
Maximum101765
Zeros0
Zeros (%)0.0%
Memory size766.2 KiB
2021-05-05T17:27:10.130460image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/

Quantile statistics

Minimum1
5-th percentile5180.55
Q125574.75
median51369.5
Q376379.25
95-th percentile96683.45
Maximum101765
Range101764
Interquartile range (IQR)50804.5

Descriptive statistics

Standard deviation29307.32802
Coefficient of variation (CV)0.5733519523
Kurtosis-1.191416496
Mean51115.77261
Median Absolute Deviation (MAD)25399.5
Skewness-0.01479878364
Sum5012003736
Variance858919475.5
MonotocityStrictly increasing
2021-05-05T17:27:10.261838image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
20471
 
< 0.1%
805621
 
< 0.1%
293391
 
< 0.1%
191001
 
< 0.1%
170531
 
< 0.1%
231981
 
< 0.1%
211511
 
< 0.1%
1010281
 
< 0.1%
989811
 
< 0.1%
764641
 
< 0.1%
Other values (98042)98042
> 99.9%
ValueCountFrequency (%)
11
< 0.1%
21
< 0.1%
31
< 0.1%
41
< 0.1%
51
< 0.1%
ValueCountFrequency (%)
1017651
< 0.1%
1017641
< 0.1%
1017631
< 0.1%
1017621
< 0.1%
1017611
< 0.1%

time_in_hospital
Real number (ℝ≥0)

Distinct14
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean4.42201077
Minimum1
Maximum14
Zeros0
Zeros (%)0.0%
Memory size766.2 KiB
2021-05-05T17:27:10.364788image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/

Quantile statistics

Minimum1
5-th percentile1
Q12
median4
Q36
95-th percentile11
Maximum14
Range13
Interquartile range (IQR)4

Descriptive statistics

Standard deviation2.993069775
Coefficient of variation (CV)0.6768571881
Kurtosis0.8179424536
Mean4.42201077
Median Absolute Deviation (MAD)2
Skewness1.123566649
Sum433587
Variance8.958466679
MonotocityNot monotonic
2021-05-05T17:27:10.461917image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
Histogram with fixed size bins (bins=14)
ValueCountFrequency (%)
317049
17.4%
216441
16.8%
113489
13.8%
413434
13.7%
59699
9.9%
67320
7.5%
75694
 
5.8%
84276
 
4.4%
92928
 
3.0%
102287
 
2.3%
Other values (4)5435
 
5.5%
ValueCountFrequency (%)
113489
13.8%
216441
16.8%
317049
17.4%
413434
13.7%
59699
9.9%
ValueCountFrequency (%)
141017
1.0%
131185
1.2%
121424
1.5%
111809
1.8%
102287
2.3%

num_lab_procedures
Real number (ℝ≥0)

Distinct118
Distinct (%)0.1%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean43.14846204
Minimum1
Maximum132
Zeros0
Zeros (%)0.0%
Memory size766.2 KiB
2021-05-05T17:27:10.574248image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/

Quantile statistics

Minimum1
5-th percentile4
Q131
median44
Q357
95-th percentile73
Maximum132
Range131
Interquartile range (IQR)26

Descriptive statistics

Standard deviation19.71175698
Coefficient of variation (CV)0.4568356797
Kurtosis-0.2451397605
Mean43.14846204
Median Absolute Deviation (MAD)13
Skewness-0.2355321992
Sum4230793
Variance388.5533634
MonotocityNot monotonic
2021-05-05T17:27:10.699443image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
13096
 
3.2%
432724
 
2.8%
442414
 
2.5%
452306
 
2.4%
382131
 
2.2%
462120
 
2.2%
402113
 
2.2%
412046
 
2.1%
422031
 
2.1%
472028
 
2.1%
Other values (108)75043
76.5%
ValueCountFrequency (%)
13096
3.2%
21062
 
1.1%
3647
 
0.7%
4364
 
0.4%
5276
 
0.3%
ValueCountFrequency (%)
1321
< 0.1%
1291
< 0.1%
1261
< 0.1%
1211
< 0.1%
1201
< 0.1%

num_procedures
Real number (ℝ≥0)

ZEROS

Distinct7
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean1.350711867
Minimum0
Maximum6
Zeros44574
Zeros (%)45.5%
Memory size766.2 KiB
2021-05-05T17:27:10.806127image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile0
Q10
median1
Q32
95-th percentile5
Maximum6
Range6
Interquartile range (IQR)2

Descriptive statistics

Standard deviation1.708474845
Coefficient of variation (CV)1.264869945
Kurtosis0.8238736795
Mean1.350711867
Median Absolute Deviation (MAD)1
Skewness1.303967313
Sum132440
Variance2.918886297
MonotocityNot monotonic
2021-05-05T17:27:10.884838image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
Histogram with fixed size bins (bins=7)
ValueCountFrequency (%)
044574
45.5%
120029
20.4%
212383
 
12.6%
39210
 
9.4%
64811
 
4.9%
44076
 
4.2%
52969
 
3.0%
ValueCountFrequency (%)
044574
45.5%
120029
20.4%
212383
 
12.6%
39210
 
9.4%
44076
 
4.2%
ValueCountFrequency (%)
64811
 
4.9%
52969
 
3.0%
44076
 
4.2%
39210
9.4%
212383
12.6%

num_medications
Real number (ℝ≥0)

Distinct75
Distinct (%)0.1%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean16.11958961
Minimum1
Maximum81
Zeros0
Zeros (%)0.0%
Memory size766.2 KiB
2021-05-05T17:27:10.990143image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/

Quantile statistics

Minimum1
5-th percentile6
Q111
median15
Q320
95-th percentile31
Maximum81
Range80
Interquartile range (IQR)9

Descriptive statistics

Standard deviation8.108495519
Coefficient of variation (CV)0.5030212132
Kurtosis3.493545221
Mean16.11958961
Median Absolute Deviation (MAD)5
Skewness1.332717291
Sum1580558
Variance65.74769959
MonotocityNot monotonic
2021-05-05T17:27:11.113852image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
135885
 
6.0%
125816
 
5.9%
155621
 
5.7%
115592
 
5.7%
145520
 
5.6%
165271
 
5.4%
105167
 
5.3%
174783
 
4.9%
94711
 
4.8%
184399
 
4.5%
Other values (65)45287
46.2%
ValueCountFrequency (%)
1236
 
0.2%
2397
 
0.4%
3785
0.8%
41269
1.3%
51835
1.9%
ValueCountFrequency (%)
811
 
< 0.1%
791
 
< 0.1%
752
< 0.1%
741
 
< 0.1%
723
< 0.1%

number_outpatient
Real number (ℝ≥0)

ZEROS

Distinct39
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean0.3763819198
Minimum0
Maximum42
Zeros81679
Zeros (%)83.3%
Memory size766.2 KiB
2021-05-05T17:27:11.236585image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile0
Q10
median0
Q30
95-th percentile2
Maximum42
Range42
Interquartile range (IQR)0

Descriptive statistics

Standard deviation1.283365421
Coefficient of variation (CV)3.409742482
Kurtosis145.589922
Mean0.3763819198
Median Absolute Deviation (MAD)0
Skewness8.78166345
Sum36905
Variance1.647026805
MonotocityNot monotonic
2021-05-05T17:27:11.341121image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
Histogram with fixed size bins (bins=39)
ValueCountFrequency (%)
081679
83.3%
18340
 
8.5%
23514
 
3.6%
32005
 
2.0%
41078
 
1.1%
5521
 
0.5%
6297
 
0.3%
7153
 
0.2%
898
 
0.1%
983
 
0.1%
Other values (29)284
 
0.3%
ValueCountFrequency (%)
081679
83.3%
18340
 
8.5%
23514
 
3.6%
32005
 
2.0%
41078
 
1.1%
ValueCountFrequency (%)
421
< 0.1%
401
< 0.1%
391
< 0.1%
381
< 0.1%
371
< 0.1%

number_emergency
Real number (ℝ≥0)

SKEWED
ZEROS

Distinct33
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean0.2024639987
Minimum0
Maximum76
Zeros86845
Zeros (%)88.6%
Memory size766.2 KiB
2021-05-05T17:27:11.444000image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile0
Q10
median0
Q30
95-th percentile1
Maximum76
Range76
Interquartile range (IQR)0

Descriptive statistics

Standard deviation0.9428968764
Coefficient of variation (CV)4.657108832
Kurtosis1171.626491
Mean0.2024639987
Median Absolute Deviation (MAD)0
Skewness22.71023391
Sum19852
Variance0.8890545196
MonotocityNot monotonic
2021-05-05T17:27:11.546273image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
Histogram with fixed size bins (bins=33)
ValueCountFrequency (%)
086845
88.6%
17550
 
7.7%
22011
 
2.1%
3716
 
0.7%
4372
 
0.4%
5190
 
0.2%
693
 
0.1%
772
 
0.1%
850
 
0.1%
1034
 
< 0.1%
Other values (23)119
 
0.1%
ValueCountFrequency (%)
086845
88.6%
17550
 
7.7%
22011
 
2.1%
3716
 
0.7%
4372
 
0.4%
ValueCountFrequency (%)
761
< 0.1%
641
< 0.1%
631
< 0.1%
541
< 0.1%
461
< 0.1%

number_inpatient
Real number (ℝ≥0)

ZEROS

Distinct20
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean0.646871048
Minimum0
Maximum21
Zeros64633
Zeros (%)65.9%
Memory size766.2 KiB
2021-05-05T17:27:11.654979image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile0
Q10
median0
Q31
95-th percentile3
Maximum21
Range21
Interquartile range (IQR)1

Descriptive statistics

Standard deviation1.271025294
Coefficient of variation (CV)1.964882024
Kurtosis19.94313813
Mean0.646871048
Median Absolute Deviation (MAD)0
Skewness3.554811324
Sum63427
Variance1.615505299
MonotocityNot monotonic
2021-05-05T17:27:11.744772image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
Histogram with fixed size bins (bins=20)
ValueCountFrequency (%)
064633
65.9%
119067
 
19.4%
27421
 
7.6%
33346
 
3.4%
41597
 
1.6%
5802
 
0.8%
6474
 
0.5%
7266
 
0.3%
8147
 
0.1%
9111
 
0.1%
Other values (10)188
 
0.2%
ValueCountFrequency (%)
064633
65.9%
119067
 
19.4%
27421
 
7.6%
33346
 
3.4%
41597
 
1.6%
ValueCountFrequency (%)
211
 
< 0.1%
192
 
< 0.1%
181
 
< 0.1%
165
< 0.1%
158
< 0.1%

number_diagnoses
Real number (ℝ≥0)

Distinct14
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean7.512095623
Minimum3
Maximum16
Zeros0
Zeros (%)0.0%
Memory size766.2 KiB
2021-05-05T17:27:11.837856image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/

Quantile statistics

Minimum3
5-th percentile4
Q16
median8
Q39
95-th percentile9
Maximum16
Range13
Interquartile range (IQR)3

Descriptive statistics

Standard deviation1.832471842
Coefficient of variation (CV)0.2439361709
Kurtosis-0.3450219608
Mean7.512095623
Median Absolute Deviation (MAD)1
Skewness-0.8175309479
Sum736576
Variance3.357953051
MonotocityNot monotonic
2021-05-05T17:27:11.931006image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
Histogram with fixed size bins (bins=14)
ValueCountFrequency (%)
948687
49.7%
510592
 
10.8%
810388
 
10.6%
710179
 
10.4%
69988
 
10.2%
45360
 
5.5%
32751
 
2.8%
1640
 
< 0.1%
1316
 
< 0.1%
1016
 
< 0.1%
Other values (4)35
 
< 0.1%
ValueCountFrequency (%)
32751
 
2.8%
45360
5.5%
510592
10.8%
69988
10.2%
710179
10.4%
ValueCountFrequency (%)
1640
< 0.1%
158
 
< 0.1%
147
 
< 0.1%
1316
 
< 0.1%
129
 
< 0.1%

change
Boolean

Distinct2
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size95.9 KiB
False
52774 
True
45278 
ValueCountFrequency (%)
False52774
53.8%
True45278
46.2%
2021-05-05T17:27:11.997532image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
Distinct2
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size95.9 KiB
True
75350 
False
22702 
ValueCountFrequency (%)
True75350
76.8%
False22702
 
23.2%
2021-05-05T17:27:12.035788image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/

isFemale
Boolean

Distinct2
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size95.9 KiB
True
52833 
False
45219 
ValueCountFrequency (%)
True52833
53.9%
False45219
46.1%
2021-05-05T17:27:12.072456image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
Distinct2
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size766.2 KiB
0
79171 
1
18881 

Length

Max length1
Median length1
Mean length1
Min length1

Characters and Unicode

Total characters98052
Distinct characters2
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st row0
2nd row1
3rd row0
4th row0
5th row0
ValueCountFrequency (%)
079171
80.7%
118881
 
19.3%
2021-05-05T17:27:12.232824image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
Histogram of lengths of the category
2021-05-05T17:27:12.291452image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
ValueCountFrequency (%)
079171
80.7%
118881
 
19.3%

Most occurring characters

ValueCountFrequency (%)
079171
80.7%
118881
 
19.3%

Most occurring categories

ValueCountFrequency (%)
Decimal Number98052
100.0%

Most frequent character per category

ValueCountFrequency (%)
079171
80.7%
118881
 
19.3%

Most occurring scripts

ValueCountFrequency (%)
Common98052
100.0%

Most frequent character per script

ValueCountFrequency (%)
079171
80.7%
118881
 
19.3%

Most occurring blocks

ValueCountFrequency (%)
ASCII98052
100.0%

Most frequent character per block

ValueCountFrequency (%)
079171
80.7%
118881
 
19.3%

race_Asian
Categorical

Distinct2
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size766.2 KiB
0
97427 
1
 
625

Length

Max length1
Median length1
Mean length1
Min length1

Characters and Unicode

Total characters98052
Distinct characters2
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st row0
2nd row0
3rd row0
4th row0
5th row0
ValueCountFrequency (%)
097427
99.4%
1625
 
0.6%
2021-05-05T17:27:12.451316image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
Histogram of lengths of the category
2021-05-05T17:27:12.509689image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
ValueCountFrequency (%)
097427
99.4%
1625
 
0.6%

Most occurring characters

ValueCountFrequency (%)
097427
99.4%
1625
 
0.6%

Most occurring categories

ValueCountFrequency (%)
Decimal Number98052
100.0%

Most frequent character per category

ValueCountFrequency (%)
097427
99.4%
1625
 
0.6%

Most occurring scripts

ValueCountFrequency (%)
Common98052
100.0%

Most frequent character per script

ValueCountFrequency (%)
097427
99.4%
1625
 
0.6%

Most occurring blocks

ValueCountFrequency (%)
ASCII98052
100.0%

Most frequent character per block

ValueCountFrequency (%)
097427
99.4%
1625
 
0.6%

race_Caucasian
Categorical

Distinct2
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size766.2 KiB
1
75079 
0
22973 

Length

Max length1
Median length1
Mean length1
Min length1

Characters and Unicode

Total characters98052
Distinct characters2
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st row1
2nd row0
3rd row1
4th row1
5th row1
ValueCountFrequency (%)
175079
76.6%
022973
 
23.4%
2021-05-05T17:27:12.663549image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
Histogram of lengths of the category
2021-05-05T17:27:12.723901image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
ValueCountFrequency (%)
175079
76.6%
022973
 
23.4%

Most occurring characters

ValueCountFrequency (%)
175079
76.6%
022973
 
23.4%

Most occurring categories

ValueCountFrequency (%)
Decimal Number98052
100.0%

Most frequent character per category

ValueCountFrequency (%)
175079
76.6%
022973
 
23.4%

Most occurring scripts

ValueCountFrequency (%)
Common98052
100.0%

Most frequent character per script

ValueCountFrequency (%)
175079
76.6%
022973
 
23.4%

Most occurring blocks

ValueCountFrequency (%)
ASCII98052
100.0%

Most frequent character per block

ValueCountFrequency (%)
175079
76.6%
022973
 
23.4%

race_Hispanic
Categorical

Distinct2
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size766.2 KiB
0
96068 
1
 
1984

Length

Max length1
Median length1
Mean length1
Min length1

Characters and Unicode

Total characters98052
Distinct characters2
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st row0
2nd row0
3rd row0
4th row0
5th row0
ValueCountFrequency (%)
096068
98.0%
11984
 
2.0%
2021-05-05T17:27:12.887504image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
Histogram of lengths of the category
2021-05-05T17:27:12.947141image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
ValueCountFrequency (%)
096068
98.0%
11984
 
2.0%

Most occurring characters

ValueCountFrequency (%)
096068
98.0%
11984
 
2.0%

Most occurring categories

ValueCountFrequency (%)
Decimal Number98052
100.0%

Most frequent character per category

ValueCountFrequency (%)
096068
98.0%
11984
 
2.0%

Most occurring scripts

ValueCountFrequency (%)
Common98052
100.0%

Most frequent character per script

ValueCountFrequency (%)
096068
98.0%
11984
 
2.0%

Most occurring blocks

ValueCountFrequency (%)
ASCII98052
100.0%

Most frequent character per block

ValueCountFrequency (%)
096068
98.0%
11984
 
2.0%

race_Other
Categorical

Distinct2
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size766.2 KiB
0
96569 
1
 
1483

Length

Max length1
Median length1
Mean length1
Min length1

Characters and Unicode

Total characters98052
Distinct characters2
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st row0
2nd row0
3rd row0
4th row0
5th row0
ValueCountFrequency (%)
096569
98.5%
11483
 
1.5%
2021-05-05T17:27:13.101510image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
Histogram of lengths of the category
2021-05-05T17:27:13.159151image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
ValueCountFrequency (%)
096569
98.5%
11483
 
1.5%

Most occurring characters

ValueCountFrequency (%)
096569
98.5%
11483
 
1.5%

Most occurring categories

ValueCountFrequency (%)
Decimal Number98052
100.0%

Most frequent character per category

ValueCountFrequency (%)
096569
98.5%
11483
 
1.5%

Most occurring scripts

ValueCountFrequency (%)
Common98052
100.0%

Most frequent character per script

ValueCountFrequency (%)
096569
98.5%
11483
 
1.5%

Most occurring blocks

ValueCountFrequency (%)
ASCII98052
100.0%

Most frequent character per block

ValueCountFrequency (%)
096569
98.5%
11483
 
1.5%
Distinct2
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size95.9 KiB
False
62196 
True
35856 
ValueCountFrequency (%)
False62196
63.4%
True35856
36.6%
2021-05-05T17:27:13.194817image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
Distinct2
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size95.9 KiB
False
75866 
True
22186 
ValueCountFrequency (%)
False75866
77.4%
True22186
 
22.6%
2021-05-05T17:27:13.232088image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
Distinct2
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size95.9 KiB
True
57838 
False
40214 
ValueCountFrequency (%)
True57838
59.0%
False40214
41.0%
2021-05-05T17:27:13.269115image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
Distinct2
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size95.9 KiB
False
63068 
True
34984 
ValueCountFrequency (%)
False63068
64.3%
True34984
35.7%
2021-05-05T17:27:13.306179image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
Distinct2
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size95.9 KiB
False
71896 
True
26156 
ValueCountFrequency (%)
False71896
73.3%
True26156
 
26.7%
2021-05-05T17:27:13.343156image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
Distinct2
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size95.9 KiB
False
88463 
True
9589 
ValueCountFrequency (%)
False88463
90.2%
True9589
 
9.8%
2021-05-05T17:27:13.378620image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
Distinct2
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size95.9 KiB
False
90803 
True
 
7249
ValueCountFrequency (%)
False90803
92.6%
True7249
 
7.4%
2021-05-05T17:27:13.416987image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
Distinct2
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size95.9 KiB
False
83449 
True
14603 
ValueCountFrequency (%)
False83449
85.1%
True14603
 
14.9%
2021-05-05T17:27:13.453372image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
Distinct2
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size95.9 KiB
False
80684 
True
17368 
ValueCountFrequency (%)
False80684
82.3%
True17368
 
17.7%
2021-05-05T17:27:13.489495image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
Distinct2
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size95.9 KiB
False
78807 
True
19245 
ValueCountFrequency (%)
False78807
80.4%
True19245
 
19.6%
2021-05-05T17:27:13.525778image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
Distinct2
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size95.9 KiB
False
96529 
True
 
1523
ValueCountFrequency (%)
False96529
98.4%
True1523
 
1.6%
2021-05-05T17:27:13.562114image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
Distinct2
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size95.9 KiB
False
93065 
True
 
4987
ValueCountFrequency (%)
False93065
94.9%
True4987
 
5.1%
2021-05-05T17:27:13.599890image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
Distinct2
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size95.9 KiB
False
85769 
True
12283 
ValueCountFrequency (%)
False85769
87.5%
True12283
 
12.5%
2021-05-05T17:27:13.636772image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
Distinct2
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size95.9 KiB
False
87791 
True
10261 
ValueCountFrequency (%)
False87791
89.5%
True10261
 
10.5%
2021-05-05T17:27:13.672695image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
Distinct2
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size95.9 KiB
False
90955 
True
 
7097
ValueCountFrequency (%)
False90955
92.8%
True7097
 
7.2%
2021-05-05T17:27:13.709594image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
Distinct2
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size95.9 KiB
False
91886 
True
 
6166
ValueCountFrequency (%)
False91886
93.7%
True6166
 
6.3%
2021-05-05T17:27:13.745639image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
Distinct2
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size95.9 KiB
True
52110 
False
45942 
ValueCountFrequency (%)
True52110
53.1%
False45942
46.9%
2021-05-05T17:27:13.783356image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/

readmitted
Categorical

Distinct2
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size766.2 KiB
0
86986 
1
11066 

Length

Max length1
Median length1
Mean length1
Min length1

Characters and Unicode

Total characters98052
Distinct characters2
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st row0
2nd row0
3rd row0
4th row0
5th row0
ValueCountFrequency (%)
086986
88.7%
111066
 
11.3%
2021-05-05T17:27:13.968778image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
Histogram of lengths of the category
2021-05-05T17:27:14.028296image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
ValueCountFrequency (%)
086986
88.7%
111066
 
11.3%

Most occurring characters

ValueCountFrequency (%)
086986
88.7%
111066
 
11.3%

Most occurring categories

ValueCountFrequency (%)
Decimal Number98052
100.0%

Most frequent character per category

ValueCountFrequency (%)
086986
88.7%
111066
 
11.3%

Most occurring scripts

ValueCountFrequency (%)
Common98052
100.0%

Most frequent character per script

ValueCountFrequency (%)
086986
88.7%
111066
 
11.3%

Most occurring blocks

ValueCountFrequency (%)
ASCII98052
100.0%

Most frequent character per block

ValueCountFrequency (%)
086986
88.7%
111066
 
11.3%

A1C_Abnorm
Categorical

Distinct2
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size766.2 KiB
0
86713 
1
11339 

Length

Max length1
Median length1
Mean length1
Min length1

Characters and Unicode

Total characters98052
Distinct characters2
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st row0
2nd row0
3rd row0
4th row0
5th row0
ValueCountFrequency (%)
086713
88.4%
111339
 
11.6%
2021-05-05T17:27:14.194815image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
Histogram of lengths of the category
2021-05-05T17:27:14.252061image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
ValueCountFrequency (%)
086713
88.4%
111339
 
11.6%

Most occurring characters

ValueCountFrequency (%)
086713
88.4%
111339
 
11.6%

Most occurring categories

ValueCountFrequency (%)
Decimal Number98052
100.0%

Most frequent character per category

ValueCountFrequency (%)
086713
88.4%
111339
 
11.6%

Most occurring scripts

ValueCountFrequency (%)
Common98052
100.0%

Most frequent character per script

ValueCountFrequency (%)
086713
88.4%
111339
 
11.6%

Most occurring blocks

ValueCountFrequency (%)
ASCII98052
100.0%

Most frequent character per block

ValueCountFrequency (%)
086713
88.4%
111339
 
11.6%

A1C_Norm
Categorical

Distinct2
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size766.2 KiB
0
93198 
1
 
4854

Length

Max length1
Median length1
Mean length1
Min length1

Characters and Unicode

Total characters98052
Distinct characters2
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st row0
2nd row0
3rd row0
4th row0
5th row0
ValueCountFrequency (%)
093198
95.0%
14854
 
5.0%
2021-05-05T17:27:14.404128image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
Histogram of lengths of the category
2021-05-05T17:27:14.464108image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
ValueCountFrequency (%)
093198
95.0%
14854
 
5.0%

Most occurring characters

ValueCountFrequency (%)
093198
95.0%
14854
 
5.0%

Most occurring categories

ValueCountFrequency (%)
Decimal Number98052
100.0%

Most frequent character per category

ValueCountFrequency (%)
093198
95.0%
14854
 
5.0%

Most occurring scripts

ValueCountFrequency (%)
Common98052
100.0%

Most frequent character per script

ValueCountFrequency (%)
093198
95.0%
14854
 
5.0%

Most occurring blocks

ValueCountFrequency (%)
ASCII98052
100.0%

Most frequent character per block

ValueCountFrequency (%)
093198
95.0%
14854
 
5.0%

glu_serum_Abnorm
Categorical

Distinct2
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size766.2 KiB
0
95376 
1
 
2676

Length

Max length1
Median length1
Mean length1
Min length1

Characters and Unicode

Total characters98052
Distinct characters2
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st row0
2nd row0
3rd row0
4th row0
5th row0
ValueCountFrequency (%)
095376
97.3%
12676
 
2.7%
2021-05-05T17:27:14.620654image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
Histogram of lengths of the category
2021-05-05T17:27:14.678435image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
ValueCountFrequency (%)
095376
97.3%
12676
 
2.7%

Most occurring characters

ValueCountFrequency (%)
095376
97.3%
12676
 
2.7%

Most occurring categories

ValueCountFrequency (%)
Decimal Number98052
100.0%

Most frequent character per category

ValueCountFrequency (%)
095376
97.3%
12676
 
2.7%

Most occurring scripts

ValueCountFrequency (%)
Common98052
100.0%

Most frequent character per script

ValueCountFrequency (%)
095376
97.3%
12676
 
2.7%

Most occurring blocks

ValueCountFrequency (%)
ASCII98052
100.0%

Most frequent character per block

ValueCountFrequency (%)
095376
97.3%
12676
 
2.7%

glu_serum_Norm
Categorical

Distinct2
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size766.2 KiB
0
95520 
1
 
2532

Length

Max length1
Median length1
Mean length1
Min length1

Characters and Unicode

Total characters98052
Distinct characters2
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st row0
2nd row0
3rd row0
4th row0
5th row0
ValueCountFrequency (%)
095520
97.4%
12532
 
2.6%
2021-05-05T17:27:14.831056image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
Histogram of lengths of the category
2021-05-05T17:27:14.888951image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
ValueCountFrequency (%)
095520
97.4%
12532
 
2.6%

Most occurring characters

ValueCountFrequency (%)
095520
97.4%
12532
 
2.6%

Most occurring categories

ValueCountFrequency (%)
Decimal Number98052
100.0%

Most frequent character per category

ValueCountFrequency (%)
095520
97.4%
12532
 
2.6%

Most occurring scripts

ValueCountFrequency (%)
Common98052
100.0%

Most frequent character per script

ValueCountFrequency (%)
095520
97.4%
12532
 
2.6%

Most occurring blocks

ValueCountFrequency (%)
ASCII98052
100.0%

Most frequent character per block

ValueCountFrequency (%)
095520
97.4%
12532
 
2.6%

decade
Real number (ℝ≥0)

Distinct10
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean71.26024966
Minimum10
Maximum100
Zeros0
Zeros (%)0.0%
Memory size766.2 KiB
2021-05-05T17:27:14.947756image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/

Quantile statistics

Minimum10
5-th percentile40
Q160
median70
Q380
95-th percentile90
Maximum100
Range90
Interquartile range (IQR)20

Descriptive statistics

Standard deviation15.59080518
Coefficient of variation (CV)0.2187868448
Kurtosis0.1117738185
Mean71.26024966
Median Absolute Deviation (MAD)10
Skewness-0.5692494878
Sum6987210
Variance243.0732063
MonotocityNot monotonic
2021-05-05T17:27:15.029952image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
Histogram with fixed size bins (bins=10)
ValueCountFrequency (%)
8025305
25.8%
7021809
22.2%
9016702
17.0%
6016697
17.0%
509265
 
9.4%
403548
 
3.6%
1002717
 
2.8%
301478
 
1.5%
20466
 
0.5%
1065
 
0.1%
ValueCountFrequency (%)
1065
 
0.1%
20466
 
0.5%
301478
 
1.5%
403548
 
3.6%
509265
9.4%
ValueCountFrequency (%)
1002717
 
2.8%
9016702
17.0%
8025305
25.8%
7021809
22.2%
6016697
17.0%

Interactions

2021-05-05T17:26:55.211418image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:26:55.335530image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:26:55.464817image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:26:55.601906image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:26:55.737500image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:26:55.860896image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:26:55.991808image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:26:56.111290image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:26:56.236112image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:26:56.353156image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:26:56.537621image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:26:56.765948image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:26:56.913217image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:26:57.059877image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:26:57.194054image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:26:57.341982image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:26:57.486153image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:26:57.619459image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:26:57.735659image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:26:57.857453image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:26:57.985340image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:26:58.119615image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:26:58.259940image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:26:58.390366image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:26:58.523000image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:26:58.651763image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:26:58.793349image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:26:58.933668image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:26:59.062059image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:26:59.190854image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:26:59.328870image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:26:59.465010image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:26:59.588527image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:26:59.723497image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:26:59.850438image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:26:59.986915image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:27:00.116409image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:27:00.254467image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:27:00.408436image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:27:00.554804image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:27:00.698847image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:27:00.833056image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:27:00.979177image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:27:01.121606image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:27:01.266783image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:27:01.401276image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:27:01.522940image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:27:01.656141image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:27:01.785539image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:27:01.914593image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:27:02.041388image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:27:02.170722image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:27:02.289754image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:27:02.416903image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:27:02.535226image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:27:02.672251image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:27:02.808263image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:27:02.968665image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:27:03.103866image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:27:03.246501image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:27:03.378291image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:27:03.514183image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:27:03.659869image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:27:03.791584image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:27:03.911945image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:27:04.035585image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:27:04.162007image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:27:04.291879image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:27:04.420852image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:27:04.545406image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:27:04.689803image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:27:05.192603image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:27:05.305214image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:27:05.433880image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:27:05.575578image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:27:05.709379image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:27:05.829974image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:27:05.957598image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:27:06.078851image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:27:06.208319image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:27:06.324501image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:27:06.439006image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:27:06.553282image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:27:06.676556image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:27:06.792146image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:27:06.904914image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:27:07.030168image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:27:07.137566image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:27:07.254475image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
2021-05-05T17:27:07.366324image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/

Correlations

2021-05-05T17:27:15.167860image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/

Pearson's r

The Pearson's correlation coefficient (r) is a measure of linear correlation between two variables. It's value lies between -1 and +1, -1 indicating total negative linear correlation, 0 indicating no linear correlation and 1 indicating total positive linear correlation. Furthermore, r is invariant under separate changes in location and scale of the two variables, implying that for a linear function the angle to the x-axis does not affect r.

To calculate r for two variables X and Y, one divides the covariance of X and Y by the product of their standard deviations.
2021-05-05T17:27:16.036454image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/

Spearman's ρ

The Spearman's rank correlation coefficient (ρ) is a measure of monotonic correlation between two variables, and is therefore better in catching nonlinear monotonic correlations than Pearson's r. It's value lies between -1 and +1, -1 indicating total negative monotonic correlation, 0 indicating no monotonic correlation and 1 indicating total positive monotonic correlation.

To calculate ρ for two variables X and Y, one divides the covariance of the rank variables of X and Y by the product of their standard deviations.
2021-05-05T17:27:16.443386image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/

Kendall's τ

Similarly to Spearman's rank correlation coefficient, the Kendall rank correlation coefficient (τ) measures ordinal association between two variables. It's value lies between -1 and +1, -1 indicating total negative correlation, 0 indicating no correlation and 1 indicating total positive correlation.

To calculate τ for two variables X and Y, one determines the number of concordant and discordant pairs of observations. τ is given by the number of concordant pairs minus the discordant pairs divided by the total number of pairs.
2021-05-05T17:27:16.852176image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/

Phik (φk)

Phik (φk) is a new and practical correlation coefficient that works consistently between categorical, ordinal and interval variables, captures non-linear dependency and reverts to the Pearson correlation coefficient in case of a bivariate normal input distribution. There is extensive documentation available here.
2021-05-05T17:27:17.243979image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/

Cramér's V (φc)

Cramér's V is an association measure for nominal random variables. The coefficient ranges from 0 to 1, with 0 indicating independence and 1 indicating perfect association. The empirical estimators used for Cramér's V have been proved to be biased, even for large samples. We use a bias-corrected measure that has been proposed by Bergsma in 2013 that can be found here.

Missing values

2021-05-05T17:27:07.739131image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
A simple visualization of nullity by column.
2021-05-05T17:27:09.275132image/svg+xmlMatplotlib v3.3.3, https://matplotlib.org/
Nullity matrix is a data-dense display which lets you quickly visually pick out patterns in data completion.

Sample

First rows

df_indextime_in_hospitalnum_lab_proceduresnum_proceduresnum_medicationsnumber_outpatientnumber_emergencynumber_inpatientnumber_diagnoseschangediabetesMedisFemalerace_AfricanAmericanrace_Asianrace_Caucasianrace_Hispanicrace_Otherdiabetes_diagnosisother_diagnosiscirculatory_diagnosisneoplasms_diagnosisrespiratory_diagnosisinjury_diagnosismusculoskeletal_diagnosisdigestive_diagnosisgenitourinary_diagnosistake_metformintake_repaglinidetake_glimepiridetake_glipizidetake_glyburidetake_pioglitazonetake_rosiglitazonetake_insulinreadmittedA1C_AbnormA1C_Normglu_serum_Abnormglu_serum_Normdecade
013590180009TrueTrueTrue00100TrueFalseFalseTrueFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseTrue0000020
122115132016FalseTrueTrue10000TrueTrueFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseTrueFalseFalseFalseFalse0000030
232441160007TrueTrueFalse00100TrueTrueTrueFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseTrue0000040
34151080005TrueTrueFalse00100TrueFalseFalseTrueFalseFalseFalseFalseFalseFalseFalseFalseTrueFalseFalseFalseTrue0000050
453316160009FalseTrueFalse00100TrueFalseTrueFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseTrue0000060
564701210007TrueTrueFalse00100FalseFalseTrueFalseFalseFalseFalseFalseFalseTrueFalseTrueFalseFalseFalseFalseTrue0000070
675730120008FalseTrueFalse00100TrueFalseTrueFalseTrueFalseFalseFalseFalseFalseFalseFalseFalseTrueFalseFalseFalse0000080
7813682280008TrueTrueTrue00100FalseTrueTrueFalseFalseFalseFalseFalseFalseFalseFalseFalseTrueFalseFalseFalseTrue0000090
8912333180008TrueTrueTrue00100FalseFalseTrueTrueTrueFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseTrueTrue00000100
9109472170009FalseTrueTrue10000TrueFalseTrueFalseFalseTrueFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseTrue0000050

Last rows

df_indextime_in_hospitalnum_lab_proceduresnum_proceduresnum_medicationsnumber_outpatientnumber_emergencynumber_inpatientnumber_diagnoseschangediabetesMedisFemalerace_AfricanAmericanrace_Asianrace_Caucasianrace_Hispanicrace_Otherdiabetes_diagnosisother_diagnosiscirculatory_diagnosisneoplasms_diagnosisrespiratory_diagnosisinjury_diagnosismusculoskeletal_diagnosisdigestive_diagnosisgenitourinary_diagnosistake_metformintake_repaglinidetake_glimepiridetake_glipizidetake_glyburidetake_pioglitazonetake_rosiglitazonetake_insulinreadmittedA1C_AbnormA1C_Normglu_serum_Abnormglu_serum_Normdecade
980421017562466171119FalseTrueTrue00001FalseFalseTrueFalseFalseTrueFalseFalseTrueFalseFalseFalseFalseFalseFalseFalseTrue0000070
980431017575211160019FalseTrueTrue00100FalseFalseFalseFalseTrueFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseTrue0000080
980441017585761220109TrueTrueTrue00100FalseTrueFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseTrue0000090
98045101759110153007TrueTrueFalse00100TrueFalseTrueTrueFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseTrue0000090
980461017606451253129TrueTrueTrue10000FalseTrueTrueFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseTrueTrue0000070
980471017613510160009TrueTrueFalse10000TrueTrueTrueFalseFalseFalseFalseFalseFalseTrueFalseFalseFalseFalseFalseFalseTrue0100080
980481017625333180019FalseTrueTrue10000FalseFalseFalseTrueFalseFalseFalseTrueFalseFalseFalseFalseFalseFalseFalseFalseTrue0000090
980491017631530910013TrueTrueFalse00100FalseTrueFalseFalseFalseFalseFalseFalseTrueTrueFalseFalseFalseFalseFalseFalseTrue0000080
9805010176410452210019TrueTrueTrue00100FalseTrueFalseFalseFalseTrueFalseFalseFalseFalseFalseFalseTrueFalseTrueFalseTrue0000090
98051101765613330009FalseFalseFalse00100FalseFalseFalseFalseFalseFalseFalseTrueFalseFalseFalseFalseFalseFalseFalseFalseFalse0000080