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What is Causal Inference ?

⇒ Effect of a policy/intervention/treatment T on an outcome Y
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Causal Inference : example of questions

⇒ Effect of a policy/intervention/treatment T on an outcome Y

• What is the impact of an oncology medicine on long term

mortality ?

• What impact do social networks have on the mental health of

adolescents and young adults ?

In your related topic :

What is the effect of using a specific organic fertilizer on a specific

crop yields ?

How do water management techniques affect crop growth and yield ?

What is the impact of specific genetic variations on the expression of

genes involved in a given metabolic pathway ?
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Potential outcomes

⇒ n i.i.d. ( Xi︸︷︷︸
covariates

,

treatment︷︸︸︷
Ti , Yi︸︷︷︸

outcome

) ∈ Rd × {0, 1} × R × R

Let’s say that in our example X1 = age and X2 = sex.

Covariates Treatment Outcome Potential outcomes 1

X1 X2 T Y Y(0) Y(1)

20 F 1 67 ? 67

45 F 0 83 83 ?

. . . . . . . . . . . . . . . . . .

52 M 0 100 100 ?

Our goal is to compute the individual causal effect of the treatment:

∆i = Yi (1)− Yi (0)
1
Donald B Rubin, Estimating causal effects of treatments in randomized and nonrandomized studies, 1974
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Identification of Average Treatment Effect

Individual causal effect of the treatment:

∆i = Yi (1)− Yi (0)

However, the two potential outcomes cannot be observed : fundamental

problem of causal inference.

In order to fix the problem, we need to define the Average Treatment

Effect:

Average Treatment Effect (ATE)

τ = E[∆] = E[Y (1)− Y (0)]

The ATE is the difference of the average outcome had everyone gotten

treated and the average outcome had nobody gotten the treatment.
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Causal Inference in RCT

Corresponding assumptions

1. Ti ⊥⊥ {Yi (0),Yi (1),Xi} (random

treatment assignment)

2. Yi = TiYi (1) + (1− Ti )Yi (0) (STUVA)
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Randomized Controlled Trial

Identifiability assumptions

• Yi = TiYi (1) + (1− Ti )Yi (0)

(STUVA : Consistency & No interference)

• Ti ⊥⊥ {Yi (0),Yi (1),Xi} (random treatment assignment)

Flip a coin to assign the treatment

We now have τ = E[∆i ] = E[Yi (1)− Yi (0)]

= E[Yi (1)]− E[Yi (0)]

= E[Yi (1)|Ti = 1]− E[Yi (0)|Ti = 0]

= E[Yi |Ti = 1]− E[Yi |Ti = 0]

We say that τ is identifiable if it can be computed using a infinite number of

observations from it.
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Randomized Controlled Trial

Identifiability assumptions

• Yi = TiYi (1) + (1− Ti )Yi (0) (STUVA)

• Ti ⊥⊥ {Yi (0),Yi (1),Xi} (random treatment assignment)

Flip a coin to assign the treatment

We now have τ = E[∆i ] = E[Yi (1)]− E[Yi (0)]

= E[Yi |Ti = 1]− E[Yi |Ti = 0]

Covariates Treatment Outcome Potential outcomes

X1 X2 T Y Y(0) Y(1)

20 F 1 67 ? 67

45 F 0 83 83 ?

. . . . . . . . . . . .

52 M 0 100 100 ?

τ̂DM = 1
n1

∑
Ti=1 Yi − 1

n0

∑
Ti=0 Yi ; τ = mean(blue)-mean(red)
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Randomized Controlled Trial

Identifiability assumptions

• Yi = TiYi (1) + (1− Ti )Yi (0) (consistency)

• Ti ⊥⊥ {Yi (0),Yi (1),Xi} (random treatment assignment)

Flip a coin to assign the treatment

Difference-in-means estimator

τ̂DM =
1

n1

n∑
i=1

TiYi −
1

n0

n∑
i=1

(1− Ti )Yi

where n1 =
∑n

i=1 Ti and n0 =
∑n

i=1 1− Ti

τ̂DM unbiased and
√
n-consistent

√
n (τ̂DM − τ)

d−−−→
n→∞

N (0,VDM)

with VDM = Var(Yi (0))
P(Ti=0) + Var(Yi (1))

P(Ti=1) .
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Data sources & evidences to estimate the treatment effect

Randomized Controlled Trial (RCT)

• gold standard (allocation )

• same covariate distributions of

treated and control groups

⇒ High internal validity

• expensive, long, ethical limitations

• small sample size: restrictive

inclusion criteria

⇒ No personalized medicine

• trial sample different from the

population eligible for treatment

⇒ Low external validity

Observational data

• “big data”: low quality

• lack of a controlled design opens

the door to confounding bias

⇒ Low internal validity

• low cost con

• large amounts of data (registries,

biobanks, EHR, claims)

⇒ patient’s heterogeneity

• representative of the target

populations

⇒ High external validity
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Observational Trial

The population is observed without any intervention by the investigator :

non experimental study so non random assignment.

Let’s say that we focus on the same treatment in an observational study :

We obtain surprising results :

Survived Deceased P(Survived | Treatment) P(Deceased | Treatment)

No treated 205 45 0,82 0,18

Treated 27 23 0,54 0,46

- Is the treatment killing people ?
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Observational Trial

What could be the problem ?

If we focus on the adjustment of covariates, we can see that the

covariates are unadjusted between the groups of treatment

Covariates T=0 T=1

Severity (from grade 1 to 3) 1,3 2,5

Age 60 75

Severe patients and older patients (with a higher risk of death) are more

likely to be treated ⇒ Confounding bias
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Confounding bias ?

⇒ Effect of a policy/intervention/treatment T on an outcome Y

• Let T be the treatment of interest

• Y the outcome

• X the confounding variables
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We want to predict what would happen if we change the system

Key point : Correlation does not imply causation
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Causal Inference : Correlation does not imply causation

Sleeping with shoes on is strongly correlated with waking up with a

headache
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Causal Inference: Correlation does not imply causation

Sleeping with shoes on is strongly correlated with waking up with a

headache

Common cause : drinking the night before
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Observational Trial : How to adjust covariates ?

Unconfoundedness

{Yi (0),Yi (1)} ⊥⊥ Ti |Xi

Measure all possible confounders

Unobserved confounders make it impossible to separate correlation and

causality when correlated to both the outcome and the treatment.
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Assumption for ATE identifiability in observational data

Overlap

Propensity score: probability of treatment given observed covariates.

e(x) ≜ P(Ti = 1 |Xi = x) ∀ x ∈ X .

We assume overlap, i.e. η < e(x) < 1− η, ∀ x ∈ X and some η > 0

Figure 1: Example of propensity score estimation in one dimensional case :

logistic regression 17



G-formula estimator

Average treatment effect (ATE): τ = E[∆i ] = E[Yi (1)− Yi (0)]

Identifiability assumptions in observational data

• {Yi (0),Yi (1)} ⊥⊥ Ti |Xi (Unconfoundedness)

• Yi = TiYi (1) + (1− Ti )Yi (0) (Consistency)

• η < e(x) < 1− η, ∀ x ∈ X and some η > 0 (Positivity)

Using the law of total expectation,

τ = E[∆i ] = E[Yi (1)]− E[Yi (0)]

= E[E[Yi (1)|X ]]− E[E[Yi (1)|X ]] Law of total probability

= E [E[Yi (1)|Ti = 1,X ]]− E [E[Yi (0)|Ti = 0,X ]] Unconfoundedness & Positivity

= E [E[Yi |Ti = 1,X ]]− E [E[Yi |Ti = 0,X ]] Consistency

G-formula estimator

τ̂G =
1

n

n∑
i=1

µ̂(1)(Xi )− µ̂(0)(Xi )

where µ(t)(X ) = E [Y |T = t,X ]
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G-formula estimator

G-formula estimator

τ̂G =
1

n

n∑
i=1

µ̂(1)(Xi )− µ̂(0)(Xi )

where µ(t)(X ) = E [Y |T = t,X ]

In assuming that assumption of

Unconfoundedness,

Consistency and Positivity are

satisfied and for t ∈ {0, 1} we

have:

E[µ̂t,n(X )]
P−→ E[µt(X )]

then T-learner estimator is an

unbiased estimator of the ATE:

E[τ̂G ] = τ
19



Inverse-propensity weighting estimator

Average treatment effect (ATE): τ = E[∆i ] = E[Yi (1)− Yi (0)]

Identifiability assumptions in observational data

• {Yi (0),Yi (1)} ⊥⊥ Ti |Xi (Unconfoundedness)

• η < e(x) < 1− η, ∀ x ∈ X and some η > 0 (Overlap)

• Yi = TiYi (1) + (1− Ti )Yi (0) (Consistency)

Propensity score : e(x) = P(Ti = 1 |Xi = x)

τ = E [Yi (1)− Yi (0)]

= E [E [Yi (1) | Xi ]− E [Yi (0) | Xi ]]

= E

[
E [Ti | Xi ]E [Yi (1) | Xi ]

e (Xi )
− E [1− Ti | Xi ]E [Yi (0) | Xi ]

1− e (Xi )

]
def. of e (X)

= E

[
E [TiYi (1) | Xi ]

e (Xi )
− E [(1− Ti )Yi (0) | Xi ]

1− e (Xi )

]
unconfoundedness

= E

[
TiYi

e (Xi )
− (1− Ti )Yi

1− e (Xi )

]
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Inverse-propensity weighting estimator

IPW estimator

τ̂IPW =
1

n

n∑
i=1

(
TiYi

ê(Xi )
− (1− Ti )Yi

1− ê(Xi )

)

⇒ Balance the differences between the two groups.

τ̂IPW unbiased and
√
n-consistent

√
n (τ̂IPW − τ)

d−−−→
n→∞

N (0,VIPW )

with VIPW = E

[
(Y (0))

2

1−e(X ) +
(Y (1))

2

e(X )

]
− τ 2 when ê(·) is consistent
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Augmented Inverse-propensity weighting estimator

Average treatment effect (ATE): τ = E[∆i ] = E[Yi (1)− Yi (0)]

Identifiability assumptions in observational data

• {Yi (0),Yi (1)} ⊥⊥ Ti |Xi (Unconfoundedness)

• η < e(x) < 1− η, ∀ x ∈ X and some η > 0 (Overlap)

• Yi = TiYi (1) + (1− Ti )Yi (0) (Consistency)

Model Treatment on Covariates e(x) = P(Ti = 1 |Xi = x)

Model Outcome on Covariates µ(w)(x) = E[Yi (w) |Xi = x ]
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Augmented Inverse-propensity weighting estimator

Average treatment effect (ATE): τ = E[∆i ] = E[Yi (1)− Yi (0)]

Identifiability assumptions in observational data

• {Yi (0),Yi (1)} ⊥⊥ Ti |Xi (Unconfoundedness)

• η < e(x) < 1− η, ∀ x ∈ X and some η > 0 (Overlap)

• Yi = TiYi (1) + (1− Ti )Yi (0) (Consistency)

Model Treatment on Covariates e(x) = P(Ti = 1 |Xi = x)

Model Outcome on Covariates µ(w)(x) = E[Yi (w) |Xi = x ]

AIPW estimator

τ̂AIPW = 1
n

∑n
i=1

(
µ(1)(Xi )− µ(0)(Xi ) +

Ti .(Yi−µ(1)(Xi ))

e(Xi )
− (1−Ti )(Yi−µ(0)(Xi ))

1−e(Xi )

)
τ̂AIPW unbiased and

√
n-consistent if either the µ̂(w)(x) are consistent or ê(x) is

consistent 2 ⇒ Doubly Robust estimator

2
Chernozhukov, Double/Debiased Machine Learning for Treatment and Causal Parameters, 2017
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Augmented Inverse-propensity weighting estimator

Model Treatment on Covariates e(x) = P(Ti = 1 |Xi = x)

Model Outcome on Covariates µ(w)(x) = E[Yi (w) |Xi = x ]

AIPW estimator

τ̂AIPW = 1
n

∑n
i=1

(
µ(1)(Xi )− µ(0)(Xi ) +

Ti .(Yi−µ(1)(Xi ))

e(Xi )
− (1−Ti )(Yi−µ(0)(Xi ))

1−e(Xi )

)
Doubly Robust estimator 3 ⇒ If we have:

E
[
(µ̂w (X )− µw (X ))2

]
E
[
(ê(X )− e(X ))2

]
= o

(
1

n

)
then τ̂AIPW is a consistent and asymptotically normal estimator of the τ :

√
n (τ̂AIPW − τ) ⇒ N (0,V ∗)

V ∗ = Var [τ (Xi )] + E

[
σ2
0 (Xi )

1− e (Xi )

]
+ E

[
σ2
1 (Xi )

e (Xi )

]
3
Chernozhukov, Double/Debiased Machine Learning for Treatment and Causal Parameters, 2017
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Conclusion

When measuring a causal effect, removing all confounding bias can be

done two different ways:
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Perspective

• What if a covariate is missing (break the unconfoundedness

assumption) ?

• Importance in variable selections (Should I add only confounding

variables in the observational estimators ?)

• Possibilities to take into account the heterogeneity in the treatment

effect : τ(x) = E[∆i |Xi = x ] = E[Yi (1)− Yi (0)|Xi = x ] ⇒
Personnalized medecine (Causal tree, Causal Forest)

26



The end

Thank you for your attention
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Appendix
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Causal Inference

Y (t) Vs Y |T = t
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AIPW : 2 ways

τ̂AIPW1 =
1

n

n∑
i=1

(
TiYi

ê (Xi )
− (1− Ti )Yi

1− ê (Xi )

)
︸ ︷︷ ︸

the IPW estimator

+
1

n

n∑
i=1

(
µ̂(1) (Xi )

(
1− Ti

ê (Xi )

)
− µ̂(0) (Xi )

(
1− 1− Ti

1− ê (Xi )

))
︸ ︷︷ ︸

≈ mean-zero noise

,

τ̂AIPW2 =
1

n

n∑
i=1

(
µ̂(1) (Xi )− µ̂(0) (Xi )

)
︸ ︷︷ ︸
a consistent treatment effect estimator

+
1

n

n∑
i=1

(
Ti

ê (Xi )

(
Yi − µ̂(1) (Xi )

)
− 1− Ti

1− ê (Xi )

(
Yi − µ̂(0) (Xi )

))
︸ ︷︷ ︸

≈ mean-zero noise

,

It makes group more similar before doing the extrapolation (linear model

extrapolate far away, changing a bit slope will change a lot the results (credit

Susan Athey)).
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