Last updated: 2022-10-27

Checks: 7 0

Knit directory: bioinformatics_tips/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20200503) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version cfb532a. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/

Unstaged changes:
    Modified:   .Rprofile
    Modified:   analysis/scripting.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/dim_reduct.Rmd) and HTML (docs/dim_reduct.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd cfb532a Dave Tang 2022-10-27 Dimension reduction

Dimension reduction is useful for identifying correlated features and reducing the data size, which is very useful for visualising large datasets.

PCA.

pca <- prcomp(iris[, 1:4])
my_col <- as.integer(iris$Species)

plot(pca$x, col = my_col, pch = 16)

t-SNE default perplexity of 30.

if(!require(tsne)){
  install.packages("tsne")
}
Loading required package: tsne
library(tsne)

tsne_ <- tsne(iris[, 1:4])
sigma summary: Min. : 0.486505661043274 |1st Qu. : 0.587913800179832 |Median : 0.614872437640536 |Mean : 0.623051089344394 |3rd Qu. : 0.654914112723525 |Max. : 0.796707932771489 |
Epoch: Iteration #100 error is: 13.1171061837296
Epoch: Iteration #200 error is: 0.238938736285296
Epoch: Iteration #300 error is: 0.237580495588205
Epoch: Iteration #400 error is: 0.2374547569615
Epoch: Iteration #500 error is: 0.237448878840098
Epoch: Iteration #600 error is: 0.237448500418977
Epoch: Iteration #700 error is: 0.237448477241058
Epoch: Iteration #800 error is: 0.237448475805662
Epoch: Iteration #900 error is: 0.23744847571858
Epoch: Iteration #1000 error is: 0.237448475713213
plot(tsne_, col = my_col, pch = 16)

Perplexity of 20.

tsne_p20 <- tsne(iris[, 1:4], perplexity = 20)
sigma summary: Min. : 0.42864778740551 |1st Qu. : 0.523593962475894 |Median : 0.553545139847788 |Mean : 0.563823813379956 |3rd Qu. : 0.596877396756174 |Max. : 0.752227354673175 |
Epoch: Iteration #100 error is: 13.5073150056192
Epoch: Iteration #200 error is: 0.268228858442339
Epoch: Iteration #300 error is: 0.262336620485244
Epoch: Iteration #400 error is: 0.261018858034014
Epoch: Iteration #500 error is: 0.260588711691426
Epoch: Iteration #600 error is: 0.260399044375287
Epoch: Iteration #700 error is: 0.260293870035397
Epoch: Iteration #800 error is: 0.260228227596464
Epoch: Iteration #900 error is: 0.260186737975538
Epoch: Iteration #1000 error is: 0.260157652086673
plot(tsne_p20, col = my_col, pch = 16)

Perplexity of 40.

tsne_p40 <- tsne(iris[, 1:4], perplexity = 40)
sigma summary: Min. : 0.527309628938834 |1st Qu. : 0.636786401601399 |Median : 0.667089986073136 |Mean : 0.671796474888864 |3rd Qu. : 0.70053875222358 |Max. : 0.836996944234283 |
Epoch: Iteration #100 error is: 12.620846895381
Epoch: Iteration #200 error is: 0.258452741303131
Epoch: Iteration #300 error is: 0.257015837325158
Epoch: Iteration #400 error is: 0.256962711285107
Epoch: Iteration #500 error is: 0.256962707558697
Epoch: Iteration #600 error is: 0.256962707553156
Epoch: Iteration #700 error is: 0.256962707553153
Epoch: Iteration #800 error is: 0.256962707553153
Epoch: Iteration #900 error is: 0.256962707553153
Epoch: Iteration #1000 error is: 0.256962707553153
plot(tsne_p40, col = my_col, pch = 16)

Perplexity of 50.

tsne_p50 <- tsne(iris[, 1:4], perplexity = 50)
sigma summary: Min. : 0.565012665854053 |1st Qu. : 0.681985646004023 |Median : 0.713004330336136 |Mean : 0.716213420895748 |3rd Qu. : 0.74581655363904 |Max. : 0.874979764925049 |
Epoch: Iteration #100 error is: 12.0664597536258
Epoch: Iteration #200 error is: 0.20135560570987
Epoch: Iteration #300 error is: 0.199907660516558
Epoch: Iteration #400 error is: 0.199720346311414
Epoch: Iteration #500 error is: 0.199720055735862
Epoch: Iteration #600 error is: 0.199720055732102
Epoch: Iteration #700 error is: 0.199720055732101
Epoch: Iteration #800 error is: 0.199720055732101
Epoch: Iteration #900 error is: 0.199720055732101
Epoch: Iteration #1000 error is: 0.199720055732101
plot(tsne_p50, col = my_col, pch = 16)

UMAP default settings.

if(!require(umap)){
  install.packages("umap")
}
Loading required package: umap
library(umap)
umap.defaults
umap configuration parameters
           n_neighbors: 15
          n_components: 2
                metric: euclidean
              n_epochs: 200
                 input: data
                  init: spectral
              min_dist: 0.1
      set_op_mix_ratio: 1
    local_connectivity: 1
             bandwidth: 1
                 alpha: 1
                 gamma: 1
  negative_sample_rate: 5
                     a: NA
                     b: NA
                spread: 1
          random_state: NA
       transform_state: NA
                   knn: NA
           knn_repeats: 1
               verbose: FALSE
       umap_learn_args: NA

UMAP with default settings.

umap_ <- umap(iris[, 1:4])

plot(umap_$layout, col = my_col, pch = 16)

Adjust number of neighbours.

umap_conf <- umap.defaults
umap_conf$n_neighbors <- 20

umap_n20 <- umap(iris[, 1:4], config = umap_conf)
plot(umap_n20$layout, col = my_col, pch = 16)


sessionInfo()
R version 4.2.0 (2022-04-22)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 20.04.4 LTS

Matrix products: default
BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/liblapack.so.3

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] umap_0.2.9.0    tsne_0.1-3.1    workflowr_1.7.0

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.8.3     RSpectra_0.16-1  highr_0.9        bslib_0.3.1     
 [5] compiler_4.2.0   pillar_1.7.0     later_1.3.0      git2r_0.30.1    
 [9] jquerylib_0.1.4  tools_4.2.0      getPass_0.2-2    digest_0.6.29   
[13] lattice_0.20-45  jsonlite_1.8.0   evaluate_0.15    tibble_3.1.7    
[17] lifecycle_1.0.1  png_0.1-7        pkgconfig_2.0.3  rlang_1.0.2     
[21] Matrix_1.4-1     cli_3.3.0        rstudioapi_0.13  yaml_2.3.5      
[25] xfun_0.31        fastmap_1.1.0    httr_1.4.3       stringr_1.4.0   
[29] knitr_1.39       askpass_1.1      sass_0.4.1       fs_1.5.2        
[33] vctrs_0.4.1      grid_4.2.0       rprojroot_2.0.3  reticulate_1.25 
[37] glue_1.6.2       R6_2.5.1         processx_3.5.3   fansi_1.0.3     
[41] rmarkdown_2.14   callr_3.7.0      magrittr_2.0.3   whisker_0.4     
[45] ps_1.7.0         promises_1.2.0.1 htmltools_0.5.2  ellipsis_0.3.2  
[49] httpuv_1.6.5     utf8_1.2.2       stringi_1.7.6    openssl_2.0.1   
[53] crayon_1.5.1