Last updated: 2025-04-18
Checks: 7 0
Knit directory: muse/ 
This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20200712) was run prior to running
the code in the R Markdown file. Setting a seed ensures that any results
that rely on randomness, e.g. subsampling or permutations, are
reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version b082b56. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for
the analysis have been committed to Git prior to generating the results
(you can use wflow_publish or
wflow_git_commit). workflowr only checks the R Markdown
file, but you know if there are other scripts or data files that it
depends on. Below is the status of the Git repository when the results
were generated:
Ignored files:
    Ignored:    .Rproj.user/
    Ignored:    data/1M_neurons_filtered_gene_bc_matrices_h5.h5
    Ignored:    data/293t/
    Ignored:    data/293t_3t3_filtered_gene_bc_matrices.tar.gz
    Ignored:    data/293t_filtered_gene_bc_matrices.tar.gz
    Ignored:    data/5k_Human_Donor1_PBMC_3p_gem-x_5k_Human_Donor1_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5
    Ignored:    data/5k_Human_Donor2_PBMC_3p_gem-x_5k_Human_Donor2_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5
    Ignored:    data/5k_Human_Donor3_PBMC_3p_gem-x_5k_Human_Donor3_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5
    Ignored:    data/5k_Human_Donor4_PBMC_3p_gem-x_5k_Human_Donor4_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5
    Ignored:    data/97516b79-8d08-46a6-b329-5d0a25b0be98.h5ad
    Ignored:    data/Parent_SC3v3_Human_Glioblastoma_filtered_feature_bc_matrix.tar.gz
    Ignored:    data/brain_counts/
    Ignored:    data/cl.obo
    Ignored:    data/cl.owl
    Ignored:    data/jurkat/
    Ignored:    data/jurkat:293t_50:50_filtered_gene_bc_matrices.tar.gz
    Ignored:    data/jurkat_293t/
    Ignored:    data/jurkat_filtered_gene_bc_matrices.tar.gz
    Ignored:    data/pbmc20k/
    Ignored:    data/pbmc20k_seurat/
    Ignored:    data/pbmc3k/
    Ignored:    data/pbmc3k_bpcells_mat/
    Ignored:    data/pbmc3k_seurat.rds
    Ignored:    data/pbmc4k_filtered_gene_bc_matrices.tar.gz
    Ignored:    data/pbmc_1k_v3_filtered_feature_bc_matrix.h5
    Ignored:    data/pbmc_1k_v3_raw_feature_bc_matrix.h5
    Ignored:    data/refdata-gex-GRCh38-2020-A.tar.gz
    Ignored:    data/seurat_1m_neuron.rds
    Ignored:    data/t_3k_filtered_gene_bc_matrices.tar.gz
    Ignored:    r_packages_4.4.1/
Untracked files:
    Untracked:  analysis/bioc_scrnaseq.Rmd
    Untracked:  bpcells_matrix/
    Untracked:  m3/
    Untracked:  pbmc3k_before_filtering.rds
    Untracked:  pbmc3k_save_rds.rds
    Untracked:  rsem.merged.gene_counts.tsv
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were
made to the R Markdown (analysis/bpcells.Rmd) and HTML
(docs/bpcells.html) files. If you’ve configured a remote
Git repository (see ?wflow_git_remote), click on the
hyperlinks in the table below to view the files as they were in that
past version.
| File | Version | Author | Date | Message | 
|---|---|---|---|---|
| Rmd | b082b56 | Dave Tang | 2025-04-18 | Exporting and loading | 
| html | 48410a3 | Dave Tang | 2025-04-17 | Build site. | 
| Rmd | 0a5c69f | Dave Tang | 2025-04-17 | Relative paths | 
| html | 277808a | Dave Tang | 2025-04-17 | Build site. | 
| Rmd | 2141310 | Dave Tang | 2025-04-17 | Modifying matrix path | 
| html | aded5ff | Dave Tang | 2025-04-16 | Build site. | 
| Rmd | 2a577d9 | Dave Tang | 2025-04-16 | Checking out the BPCells package | 
BPCells is an R package that allows for computationally efficient single-cell analysis. It utilizes bit-packing compression to store counts matrices on disk and C++ code to cache operations.
remotes::install_github("bnprks/BPCells/r")Load packages.
suppressPackageStartupMessages(library(BPCells))
suppressPackageStartupMessages(library(Matrix))Write matrix to disk using BPCells.
set.seed(1984)
bpcells_dir <- 'bpcells_matrix'
if(dir.exists(bpcells_dir)){
  unlink(bpcells_dir, recursive = TRUE)
}
write_matrix_dir(
  mat = rsparsematrix(50000, 50000, density = 0.01),
  dir = bpcells_dir
)Warning: Matrix compression performs poorly with non-integers.
• Consider calling convert_matrix_type if a compressed integer matrix is intended.
This message is displayed once every 8 hours.50000 x 50000 IterableMatrix object with class MatrixDir
Row names: unknown names
Col names: unknown names
Data type: double
Storage order: column major
Queued Operations:
1. Load compressed matrix from directory /home/rstudio/muse/bpcells_matrixOpen the BPCells matrix from disk.
bp_mat <- open_matrix_dir(bpcells_dir)
bp_mat50000 x 50000 IterableMatrix object with class MatrixDir
Row names: unknown names
Col names: unknown names
Data type: double
Storage order: column major
Queued Operations:
1. Load compressed matrix from directory /home/rstudio/muse/bpcells_matrixCalculate row and column sums (lazily, disk-backed).
row_sums <- rowSums(bp_mat)
col_sums <- colSums(bp_mat)
head(row_sums)[1]  -3.04895 -15.53270  33.77594 -16.79850  -1.07540  12.19100dense_row <- as.matrix(bp_mat[1, ])Warning: Converting to a dense matrix may use excessive memory
This message is displayed once every 8 hours.sum(dense_row)[1] -3.04895Following the example by Ben Parks:
my_dir <- file.path(tempdir(), "data")
m1 <- matrix(1:12, nrow=3) |> 
  as("IterableMatrix") |>
  write_matrix_dir(file.path(my_dir, "m1"), overwrite = TRUE) |>
  log1p()
m13 x 4 IterableMatrix object with class TransformLog1p
Row names: unknown names
Col names: unknown names
Data type: double
Storage order: column major
Queued Operations:
1. Load compressed matrix from directory /tmp/RtmpGBuknV/data/m1
2. Transform log1pall_matrix_inputs() strips away any queued operations,
i.e., Transform lop1p is gone. We can use
inputs to modify the path. Note that the queued operations
in m1 are intact.
inputs <- all_matrix_inputs(m1)
str(inputs)List of 1
 $ :Formal class 'MatrixDir' [package "BPCells"] with 7 slots
  .. ..@ dir        : chr "/tmp/RtmpGBuknV/data/m1"
  .. ..@ compressed : logi TRUE
  .. ..@ buffer_size: int 8192
  .. ..@ type       : chr "double"
  .. ..@ dim        : int [1:2] 3 4
  .. ..@ transpose  : logi FALSE
  .. ..@ dimnames   :List of 2
  .. .. ..$ : NULL
  .. .. ..$ : NULLm13 x 4 IterableMatrix object with class TransformLog1p
Row names: unknown names
Col names: unknown names
Data type: double
Storage order: column major
Queued Operations:
1. Load compressed matrix from directory /tmp/RtmpGBuknV/data/m1
2. Transform log1pCreate another matrix.
m2 <- matrix(1:21, nrow=3) |> 
  as("IterableMatrix") |>
  write_matrix_dir(file.path(my_dir, "m2"), overwrite = TRUE)
m23 x 7 IterableMatrix object with class MatrixDir
Row names: unknown names
Col names: unknown names
Data type: double
Storage order: column major
Queued Operations:
1. Load compressed matrix from directory /tmp/RtmpGBuknV/data/m2Modify path.
inputs[[1]]@dir <- file.path(my_dir, "m2")
all_matrix_inputs(m1) <- inputs
m13 x 4 IterableMatrix object with class TransformLog1p
Row names: unknown names
Col names: unknown names
Data type: double
Storage order: column major
Queued Operations:
1. Load compressed matrix from directory /tmp/RtmpGBuknV/data/m2
2. Transform log1pCheck that it is using m2, which has 7 columns.
Matrix::colMeans(m1)[1] 1.059351 1.782369 2.193084 2.482584 2.706565 2.889341 3.043766It seems that write_matrix_dir() uses full paths by
default.
m3 <- matrix(1:12, nrow=3) |> 
  as("IterableMatrix") |>
  write_matrix_dir("m3", overwrite = TRUE) |>
  log1p()
m33 x 4 IterableMatrix object with class TransformLog1p
Row names: unknown names
Col names: unknown names
Data type: double
Storage order: column major
Queued Operations:
1. Load compressed matrix from directory /home/rstudio/muse/m3
2. Transform log1pWill it work if I modify it to a relative path?
m3_inputs <- all_matrix_inputs(m3)
m3_inputs[[1]]@dir <- file.path("m3")
all_matrix_inputs(m3) <- m3_inputs
m33 x 4 IterableMatrix object with class TransformLog1p
Row names: unknown names
Col names: unknown names
Data type: double
Storage order: column major
Queued Operations:
1. Load compressed matrix from directory m3
2. Transform log1pCalculate column means.
Matrix::colMeans(m3)[1] 1.059351 1.782369 2.193084 2.482584Use saveRDS().
saveRDS(object = m3, file = paste0(my_dir, 'm3.rds'))Load.
m3_loaded <- readRDS(paste0(my_dir, 'm3.rds'))
m3_loaded3 x 4 IterableMatrix object with class TransformLog1p
Row names: unknown names
Col names: unknown names
Data type: double
Storage order: column major
Queued Operations:
1. Load compressed matrix from directory m3
2. Transform log1pFor m3 we used a relative path, so it will work if the
matrix directory exists in the current directory (which it should).
Matrix::colMeans(m3)[1] 1.059351 1.782369 2.193084 2.482584
sessionInfo()R version 4.4.1 (2024-06-14)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 22.04.5 LTS
Matrix products: default
BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 
LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so;  LAPACK version 3.10.0
locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
time zone: Etc/UTC
tzcode source: system (glibc)
attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     
other attached packages:
[1] Matrix_1.7-0    BPCells_0.3.0   workflowr_1.7.1
loaded via a namespace (and not attached):
 [1] jsonlite_1.8.9          compiler_4.4.1          promises_1.3.2         
 [4] Rcpp_1.0.13             stringr_1.5.1           git2r_0.35.0           
 [7] GenomicRanges_1.58.0    callr_3.7.6             later_1.3.2            
[10] jquerylib_0.1.4         IRanges_2.40.1          yaml_2.3.10            
[13] fastmap_1.2.0           lattice_0.22-6          XVector_0.46.0         
[16] R6_2.5.1                GenomeInfoDb_1.42.3     knitr_1.48             
[19] BiocGenerics_0.52.0     tibble_3.2.1            MatrixGenerics_1.18.1  
[22] rprojroot_2.0.4         GenomeInfoDbData_1.2.13 bslib_0.8.0            
[25] pillar_1.10.1           rlang_1.1.4             cachem_1.1.0           
[28] stringi_1.8.4           httpuv_1.6.15           xfun_0.48              
[31] getPass_0.2-4           fs_1.6.4                sass_0.4.9             
[34] cli_3.6.3               magrittr_2.0.3          zlibbioc_1.52.0        
[37] ps_1.8.1                digest_0.6.37           grid_4.4.1             
[40] processx_3.8.4          rstudioapi_0.17.1       lifecycle_1.0.4        
[43] S4Vectors_0.44.0        vctrs_0.6.5             evaluate_1.0.1         
[46] glue_1.8.0              whisker_0.4.1           stats4_4.4.1           
[49] rmarkdown_2.28          httr_1.4.7              matrixStats_1.5.0      
[52] UCSC.utils_1.2.0        tools_4.4.1             pkgconfig_2.0.3        
[55] htmltools_0.5.8.1