Last updated: 2026-01-05
Checks: 7 0
Knit directory: muse/
This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20200712) was run prior to running
the code in the R Markdown file. Setting a seed ensures that any results
that rely on randomness, e.g. subsampling or permutations, are
reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version b5e26c0. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for
the analysis have been committed to Git prior to generating the results
(you can use wflow_publish or
wflow_git_commit). workflowr only checks the R Markdown
file, but you know if there are other scripts or data files that it
depends on. Below is the status of the Git repository when the results
were generated:
Ignored files:
Ignored: .Rproj.user/
Ignored: data/1M_neurons_filtered_gene_bc_matrices_h5.h5
Ignored: data/293t/
Ignored: data/293t_3t3_filtered_gene_bc_matrices.tar.gz
Ignored: data/293t_filtered_gene_bc_matrices.tar.gz
Ignored: data/5k_Human_Donor1_PBMC_3p_gem-x_5k_Human_Donor1_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5
Ignored: data/5k_Human_Donor2_PBMC_3p_gem-x_5k_Human_Donor2_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5
Ignored: data/5k_Human_Donor3_PBMC_3p_gem-x_5k_Human_Donor3_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5
Ignored: data/5k_Human_Donor4_PBMC_3p_gem-x_5k_Human_Donor4_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5
Ignored: data/97516b79-8d08-46a6-b329-5d0a25b0be98.h5ad
Ignored: data/Parent_SC3v3_Human_Glioblastoma_filtered_feature_bc_matrix.tar.gz
Ignored: data/brain_counts/
Ignored: data/cl.obo
Ignored: data/cl.owl
Ignored: data/jurkat/
Ignored: data/jurkat:293t_50:50_filtered_gene_bc_matrices.tar.gz
Ignored: data/jurkat_293t/
Ignored: data/jurkat_filtered_gene_bc_matrices.tar.gz
Ignored: data/pbmc20k/
Ignored: data/pbmc20k_seurat/
Ignored: data/pbmc3k.h5ad
Ignored: data/pbmc3k/
Ignored: data/pbmc3k_bpcells_mat/
Ignored: data/pbmc3k_export.mtx
Ignored: data/pbmc3k_matrix.mtx
Ignored: data/pbmc3k_seurat.rds
Ignored: data/pbmc4k_filtered_gene_bc_matrices.tar.gz
Ignored: data/pbmc_1k_v3_filtered_feature_bc_matrix.h5
Ignored: data/pbmc_1k_v3_raw_feature_bc_matrix.h5
Ignored: data/refdata-gex-GRCh38-2020-A.tar.gz
Ignored: data/seurat_1m_neuron.rds
Ignored: data/t_3k_filtered_gene_bc_matrices.tar.gz
Ignored: r_packages_4.4.1/
Ignored: r_packages_4.5.0/
Untracked files:
Untracked: analysis/bioc.Rmd
Untracked: analysis/bioc_scrnaseq.Rmd
Untracked: analysis/likelihood.Rmd
Untracked: bpcells_matrix/
Untracked: data/Caenorhabditis_elegans.WBcel235.113.gtf.gz
Untracked: data/GCF_043380555.1-RS_2024_12_gene_ontology.gaf.gz
Untracked: data/arab.rds
Untracked: data/astronomicalunit.csv
Untracked: data/femaleMiceWeights.csv
Untracked: data/lung_bcell.rds
Untracked: m3/
Untracked: women.json
Unstaged changes:
Modified: analysis/isoform_switch_analyzer.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were
made to the R Markdown (analysis/pubmedr.Rmd) and HTML
(docs/pubmedr.html) files. If you’ve configured a remote
Git repository (see ?wflow_git_remote), click on the
hyperlinks in the table below to view the files as they were in that
past version.
| File | Version | Author | Date | Message |
|---|---|---|---|---|
| Rmd | b5e26c0 | Dave Tang | 2026-01-05 | Affiliations |
| html | f3e07e6 | Dave Tang | 2026-01-05 | Build site. |
| Rmd | 6eafc4d | Dave Tang | 2026-01-05 | Using the pubmedR package |
Following the brief demo.
install.packages("pubmedR")
install.packages("bibliometrix")
Load library.
library(pubmedR)
packageVersion("pubmedR")
[1] '0.0.3'
Perform a query.
query <- "bibliometric*[Title/Abstract] AND english[LA] AND Journal Article[PT] AND 2000:2020[DP]"
res <- pmQueryTotalCount(query = query)
res$total_count
[1] 3748
| Affiliation [ad] | Full Investigator Name [fir] | Pagination [pg] |
| All Fields [all] | Grants and Funding [gr] | Personal Name as Subject [ps] |
| Article Identifier [aid] | Investigator [ir] | Pharmacological Action [pa] |
| Author [au] | ISBN [isbn] | Place of Publication [pl] |
| Author Identifier [auid] | Issue [ip] | PMCID and MID |
| Book [book] | Journal [ta] | PMID [pmid] |
| Comment Correction Type | Language [la] | Publication Date [dp] |
| Completion Date [dcom] | Last Author Name [lastau] | Publication Type [pt] |
| Conflict of Interest Statement [cois] | Location ID [lid] | Publisher [pubn] |
| Corporate Author [cn] | MeSH Date [mhda] | Secondary Source ID [si] |
| Create Date [crdt] | MeSH Major Topic [majr] | Subset [sb] |
| EC/RN Number [rn] | MeSH Subheadings [sh] | Supplementary Concept [nm] |
| Editor [ed] | MeSH Terms [mh] | Text Words [tw] |
| Entry Date [edat] | Modification Date [lr] | Title [ti] |
| Filter [filter] [sb] | NLM Unique ID [jid] | Title/Abstract [tiab] |
| First Author Name [1au] | Other Term [ot] | Transliterated Title [tt] |
| Full Author Name [fau] | Owner | Volume [vi] |
Search for some dude called Dave Tang.
query <- "Dave Tang[fau]"
res <- pmQueryTotalCount(query = query)
res
$total_count
[1] 22
$query_translation
[1] "tang, dave[Author]"
$web_history
Web history object (QueryKey = 1, WebEnv = MCID_695b57a...)
Download the collection of document metadata.
D <- pmApiRequest(query = query, limit = res$total_count, api_key = NULL)
Documents 22 of 22
M <- pmApi2df(D)
================================================================================
Use some {bibliometrix} functions to get an overview of the bibliographic collection.
suppressPackageStartupMessages(library(bibliometrix))
M <- convert2df(D, dbsource = "pubmed", format = "api")
Converting your pubmed collection into a bibliographic dataframe
================================================================================
Done!
results <- biblioAnalysis(M)
summary(results)
MAIN INFORMATION ABOUT DATA
Timespan 2008 : 2020
Sources (Journals, Books, etc) 14
Documents 21
Annual Growth Rate % 0
Document Average Age 12.5
Average citations per doc 0
Average citations per year per doc 0
References 1
DOCUMENT TYPES
case reports 2
comparative study 1
dataset 1
journal article 17
DOCUMENT CONTENTS
Keywords Plus (ID) 179
Author's Keywords (DE) 28
AUTHORS
Authors 194
Author Appearances 269
Authors of single-authored docs 0
AUTHORS COLLABORATION
Single-authored docs 0
Documents per Author 0.108
Co-Authors per Doc 12.8
International co-authorships % 0
Annual Scientific Production
Year Articles
2008 2
2009 3
2010 2
2011 1
2012 2
2014 1
2015 1
2016 4
2017 2
2018 1
2020 2
Annual Percentage Growth Rate 0
Most Productive Authors
Authors Articles Authors Articles Fractionalized
1 TANG D 17 TANG D 1.673
2 LASSMANN T 6 CARNINCI P 0.680
3 CARNINCI P 5 TANG DT 0.597
4 GRIMMOND SM 5 GRIMMOND SM 0.474
5 BLACKWELL JM 4 SAXENA A 0.444
6 CHIU HS 4 LASSMANN T 0.410
7 LITTLE MH 4 CHIU HS 0.331
8 TANG DT 4 LITTLE MH 0.331
9 ANDERSON D 3 BLACKWELL JM 0.308
10 GEORGAS KM 3 ANDERSON D 0.303
Top manuscripts per citations
Paper DOI TC TCperYear NTC
1 LASSMANN T, 2020, NPJ GENOM MED 10.1038/s41525-020-00161-w 0 0 NaN
2 ANDERSON D, 2020, SCI REP 10.1038/s41598-020-76157-4 0 0 NaN
3 BERTUZZI M, 2018, HUM MUTAT 10.1002/humu.23974 0 0 NaN
4 TANG D, 2017, SCI REP 10.1038/s41598-018-29279-9 0 0 NaN
5 ROTHACKER KM, 2017, INT J PEDIATR ENDOCRINOL 10.1186/s13633-018-0056-3 0 0 NaN
6 ROUDNICKY F, 2016, J PATHOL 10.1002/path.4892 0 0 NaN
7 HON CC, 2016, NATURE 10.1038/nature21374 0 0 NaN
8 ABRAHAM MB, 2016, INT J PEDIATR ENDOCRINOL 10.1186/s13633-016-0041-7 0 0 NaN
9 BAYNAM G, 2016, ORPHANET J RARE DIS 10.1186/s13023-016-0462-7 0 0 NaN
10 TANG D, 2015, SCI DATA 10.1038/sdata.2016.23 0 0 NaN
Corresponding Author's Countries
Country Articles Freq SCP MCP MCP_Ratio
1 NA 21 1 21 0 0
SCP: Single Country Publications
MCP: Multiple Country Publications
Total Citations per Country
Country Total Citations Average Article Citations
1 NA 0 0
Most Relevant Sources
Sources Articles
1 SCIENTIFIC REPORTS 3
2 BMC GENOMICS 2
3 DEVELOPMENTAL BIOLOGY 2
4 INTERNATIONAL JOURNAL OF PEDIATRIC ENDOCRINOLOGY 2
5 NATURE 2
6 PLOS ONE 2
7 BIOINFORMATICS (OXFORD ENGLAND) 1
8 DISEASE MARKERS 1
9 HUMAN MUTATION 1
10 NPJ GENOMIC MEDICINE 1
Most Relevant Keywords
Author Keywords (DE) Articles Keywords-Plus (ID) Articles
1 ANGIOGENESIS 1 ANIMALS 11
2 BLADDER CANCER 1 HUMANS 11
3 BLOOD TRANSCRIPTOMICS 1 MICE 8
4 CLINICAL BEST PRACTICE 1 GENOMICS 5
5 DESERT HEDGEHOG 1 GENE EXPRESSION PROFILING 4
6 DHH 1 GENOME-WIDE ASSOCIATION STUDY 4
7 DIAGNOSIS 1 HIGH-THROUGHPUT NUCLEOTIDE SEQUENCING 4
8 DIAGNOSTIC ODYSSEY 1 POLYMORPHISM SINGLE NUCLEOTIDE 4
9 DISORDER OF SEX DEVELOPMENT 1 SEQUENCE ANALYSIS RNA 4
10 FAM111A GENE 1 AUSTRALIA 3
Metadata.
names(results)
[1] "Articles" "Authors" "AuthorsFrac" "FirstAuthors" "nAUperPaper"
[6] "Appearances" "nAuthors" "AuMultiAuthoredArt" "AuSingleAuthoredArt" "MostCitedPapers"
[11] "Years" "FirstAffiliation" "Affiliations" "Aff_frac" "CO"
[16] "Countries" "CountryCollaboration" "TotalCitation" "TCperYear" "Sources"
[21] "DE" "ID" "Documents" "IntColl" "nReferences"
[26] "DB"
Affiliations.
results$Affiliations |>
as.data.frame() |>
dplyr::pull(AFF) |>
as.vector() |>
unique() |>
head(10)
[1] "GENETIC SERVICES OF WESTERN AUSTRALIA, DEPARTMENT OF HEALTH, GOVERNMENT OF WESTERN AUSTRALIA, PERTH, WA, AUSTRALIA."
[2] "RIKEN CENTER FOR LIFE SCIENCE TECHNOLOGIES (DIVISION OF GENOMIC TECHNOLOGIES), 1-7-22 SUEHIRO-CHO, TSURUMI-KU, YOKOHAMA, 230-0045 JAPAN."
[3] "RIKEN OMICS SCIENCE CENTER (OSC), 1-7-22 SUEHIRO-CHO, TSURUMI-KU, YOKOHAMA 230-0045, JAPAN."
[4] "TELETHON KIDS INSTITUTE, UNIVERSITY OF WESTERN AUSTRALIA, PERTH, WA, AUSTRALIA."
[5] "TELETHON KIDS INSTITUTE, THE UNIVERSITY OF WESTERN AUSTRALIA, PERTH, WA, AUSTRALIA."
[6] "TELETHON KIDS INSTITUTE, THE UNIVERSITY OF WESTERN AUSTRALIA, SUBIACO, WESTERN AUSTRALIA 6008, AUSTRALIA."
[7] "TELETHON KIDS INSTITUTE, THE UNIVERSITY OF WESTERN AUSTRALIA, SUBIACO, WESTERN AUSTRALIA, 6008, AUSTRALIA."
[8] "AREA OF NEUROSCIENCE, SISSA, TRIESTE, ITALY."
[9] "INSTITUTE OF PHARMACEUTICAL SCIENCES, ETH ZURICH, ZURICH, SWITZERLAND."
[10] "1] OMICS SCIENCE CENTER, RIKEN YOKOHAMA INSTITUTE, 1-7-22 SUEHIRO-CHO TSURUMI-KU YOKOHAMA, KANAGAWA, 230-0045 JAPAN [2] RIKEN CENTER FOR LIFE SCIENCE TECHNOLOGIES, DIVISION OF GENOMIC TECHNOLOGIES, 1-7-22 SUEHIRO-CHO TSURUMI-KU YOKOHAMA, KANAGAWA, 230-0045 JAPAN."
sessionInfo()
R version 4.5.0 (2025-04-11)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 24.04.3 LTS
Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.26.so; LAPACK version 3.12.0
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8 LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
time zone: Etc/UTC
tzcode source: system (glibc)
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] bibliometrix_5.0.1 pubmedR_0.0.3 lubridate_1.9.4 forcats_1.0.0 stringr_1.5.1 dplyr_1.1.4
[7] purrr_1.0.4 readr_2.1.5 tidyr_1.3.1 tibble_3.3.0 ggplot2_3.5.2 tidyverse_2.0.0
[13] workflowr_1.7.1
loaded via a namespace (and not attached):
[1] tidyselect_1.2.1 viridisLite_0.4.2 farver_2.1.2 fastmap_1.2.0 lazyeval_0.2.2
[6] janeaustenr_1.0.0 promises_1.3.3 XML_3.99-0.18 digest_0.6.37 timechange_0.3.0
[11] mime_0.13 lifecycle_1.0.4 tokenizers_0.3.0 processx_3.8.6 magrittr_2.0.3
[16] compiler_4.5.0 rlang_1.1.6 sass_0.4.10 tools_4.5.0 igraph_2.1.4
[21] yaml_2.3.10 tidytext_0.4.2 data.table_1.17.4 knitr_1.50 htmlwidgets_1.6.4
[26] curl_6.4.0 plyr_1.8.9 RColorBrewer_1.1-3 ca_0.71.1 withr_3.0.2
[31] grid_4.5.0 git2r_0.36.2 xtable_1.8-4 scales_1.4.0 cli_3.6.5
[36] rmarkdown_2.29 generics_0.1.4 stringdist_0.9.15 rstudioapi_0.17.1 httr_1.4.7
[41] tzdb_0.5.0 visNetwork_2.1.2 readxl_1.4.5 cachem_1.1.0 rscopus_0.8.1
[46] parallel_4.5.0 cellranger_1.1.0 vctrs_0.6.5 Matrix_1.7-3 jsonlite_2.0.0
[51] callr_3.7.6 hms_1.1.3 ggrepel_0.9.6 plotly_4.11.0 jquerylib_0.1.4
[56] glue_1.8.0 ps_1.9.1 DT_0.33 stringi_1.8.7 gtable_0.3.6
[61] later_1.4.2 pillar_1.10.2 htmltools_0.5.8.1 bibliometrixData_0.3.0 R6_2.6.1
[66] rprojroot_2.0.4 evaluate_1.0.3 shiny_1.11.1 lattice_0.22-6 rentrez_1.2.4
[71] SnowballC_0.7.1 openxlsx_4.2.8 openalexR_2.0.1 httpuv_1.6.16 bslib_0.9.0
[76] Rcpp_1.0.14 zip_2.3.3 whisker_0.4.1 dimensionsR_0.0.3 xfun_0.52
[81] fs_1.6.6 getPass_0.2-4 pkgconfig_2.0.3