Last updated: 2025-09-04

Checks: 7 0

Knit directory: muse/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20200712) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 87b461f. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rproj.user/
    Ignored:    data/1M_neurons_filtered_gene_bc_matrices_h5.h5
    Ignored:    data/293t/
    Ignored:    data/293t_3t3_filtered_gene_bc_matrices.tar.gz
    Ignored:    data/293t_filtered_gene_bc_matrices.tar.gz
    Ignored:    data/5k_Human_Donor1_PBMC_3p_gem-x_5k_Human_Donor1_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5
    Ignored:    data/5k_Human_Donor2_PBMC_3p_gem-x_5k_Human_Donor2_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5
    Ignored:    data/5k_Human_Donor3_PBMC_3p_gem-x_5k_Human_Donor3_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5
    Ignored:    data/5k_Human_Donor4_PBMC_3p_gem-x_5k_Human_Donor4_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5
    Ignored:    data/97516b79-8d08-46a6-b329-5d0a25b0be98.h5ad
    Ignored:    data/Parent_SC3v3_Human_Glioblastoma_filtered_feature_bc_matrix.tar.gz
    Ignored:    data/brain_counts/
    Ignored:    data/cl.obo
    Ignored:    data/cl.owl
    Ignored:    data/jurkat/
    Ignored:    data/jurkat:293t_50:50_filtered_gene_bc_matrices.tar.gz
    Ignored:    data/jurkat_293t/
    Ignored:    data/jurkat_filtered_gene_bc_matrices.tar.gz
    Ignored:    data/pbmc20k/
    Ignored:    data/pbmc20k_seurat/
    Ignored:    data/pbmc3k.h5ad
    Ignored:    data/pbmc3k/
    Ignored:    data/pbmc3k_bpcells_mat/
    Ignored:    data/pbmc3k_export.mtx
    Ignored:    data/pbmc3k_matrix.mtx
    Ignored:    data/pbmc3k_seurat.rds
    Ignored:    data/pbmc4k_filtered_gene_bc_matrices.tar.gz
    Ignored:    data/pbmc_1k_v3_filtered_feature_bc_matrix.h5
    Ignored:    data/pbmc_1k_v3_raw_feature_bc_matrix.h5
    Ignored:    data/refdata-gex-GRCh38-2020-A.tar.gz
    Ignored:    data/seurat_1m_neuron.rds
    Ignored:    data/t_3k_filtered_gene_bc_matrices.tar.gz
    Ignored:    r_packages_4.4.1/
    Ignored:    r_packages_4.5.0/

Untracked files:
    Untracked:  analysis/bioc_scrnaseq.Rmd
    Untracked:  bpcells_matrix/
    Untracked:  data/Caenorhabditis_elegans.WBcel235.113.gtf.gz
    Untracked:  data/GCF_043380555.1-RS_2024_12_gene_ontology.gaf.gz
    Untracked:  data/arab.rds
    Untracked:  data/astronomicalunit.csv
    Untracked:  data/femaleMiceWeights.csv
    Untracked:  m3/

Unstaged changes:
    Modified:   analysis/isoform_switch_analyzer.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/biomart_homologues.Rmd) and HTML (docs/biomart_homologues.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 87b461f Dave Tang 2025-09-04 Using biomaRt to get homologues

Installation

To begin, install the {biomaRt} package.

if (!require("BiocManager", quietly = TRUE))
    install.packages("BiocManager")

BiocManager::install("biomaRt")

Package

Load package.

suppressPackageStartupMessages(library(biomaRt))
packageVersion("biomaRt")
[1] '2.64.0'

Getting started

List the available BioMart databases.

listMarts()
               biomart                version
1 ENSEMBL_MART_ENSEMBL      Ensembl Genes 115
2   ENSEMBL_MART_MOUSE      Mouse strains 115
3     ENSEMBL_MART_SNP  Ensembl Variation 115
4 ENSEMBL_MART_FUNCGEN Ensembl Regulation 115

Connect to the selected BioMart database by using useMart().

ensembl <- useMart("ENSEMBL_MART_ENSEMBL")
avail_datasets <- listDatasets(ensembl)
head(avail_datasets)
                       dataset                           description
1 abrachyrhynchus_gene_ensembl Pink-footed goose genes (ASM259213v1)
2     acalliptera_gene_ensembl      Eastern happy genes (fAstCal1.3)
3   acarolinensis_gene_ensembl       Green anole genes (AnoCar2.0v2)
4    acchrysaetos_gene_ensembl       Golden eagle genes (bAquChr1.2)
5    acitrinellus_gene_ensembl        Midas cichlid genes (Midas_v5)
6    amelanoleuca_gene_ensembl       Giant panda genes (ASM200744v2)
      version
1 ASM259213v1
2  fAstCal1.3
3 AnoCar2.0v2
4  bAquChr1.2
5    Midas_v5
6 ASM200744v2

Look for human datasets by searching the description column.

idx <- grep('human', avail_datasets$description, ignore.case = TRUE)
avail_datasets[idx, ]
                 dataset              description    version
80 hsapiens_gene_ensembl Human genes (GRCh38.p14) GRCh38.p14

Connect to the selected BioMart database and human dataset.

ensembl <- useMart("ensembl", dataset=avail_datasets[idx, 'dataset'])
ensembl
Object of class 'Mart':
  Using the ENSEMBL_MART_ENSEMBL BioMart database
  Using the hsapiens_gene_ensembl dataset

Building a query, requires three things:

  1. filters
  2. attributes
  3. values

Use listFilters() to show available filters.

avail_filters <- listFilters(ensembl)
head(avail_filters)
             name              description
1 chromosome_name Chromosome/scaffold name
2           start                    Start
3             end                      End
4      band_start               Band Start
5        band_end                 Band End
6    marker_start             Marker Start

Use listAttributes() to show available attributes.

avail_attributes <- listAttributes(ensembl)
head(avail_attributes)
                           name                  description         page
1               ensembl_gene_id               Gene stable ID feature_page
2       ensembl_gene_id_version       Gene stable ID version feature_page
3         ensembl_transcript_id         Transcript stable ID feature_page
4 ensembl_transcript_id_version Transcript stable ID version feature_page
5            ensembl_peptide_id            Protein stable ID feature_page
6    ensembl_peptide_id_version    Protein stable ID version feature_page

Look for mouse homologues.

grep('homolog', avail_attributes$name, ignore.case = TRUE, value = TRUE) |>
  grep('mmus', x = _, ignore.case = TRUE, value = TRUE) -> wanted_attr

wanted_attr <- c('ensembl_gene_id', wanted_attr)
wanted_attr
 [1] "ensembl_gene_id"                               
 [2] "mmusculus_homolog_ensembl_gene"                
 [3] "mmusculus_homolog_associated_gene_name"        
 [4] "mmusculus_homolog_ensembl_peptide"             
 [5] "mmusculus_homolog_chromosome"                  
 [6] "mmusculus_homolog_chrom_start"                 
 [7] "mmusculus_homolog_chrom_end"                   
 [8] "mmusculus_homolog_canonical_transcript_protein"
 [9] "mmusculus_homolog_subtype"                     
[10] "mmusculus_homolog_orthology_type"              
[11] "mmusculus_homolog_perc_id"                     
[12] "mmusculus_homolog_perc_id_r1"                  
[13] "mmusculus_homolog_goc_score"                   
[14] "mmusculus_homolog_wga_coverage"                
[15] "mmusculus_homolog_orthology_confidence"        

ENSG00000206172 (HBA1).

my_gene <- 'ENSG00000206172'

getBM(
  attributes = wanted_attr,
  filters = "ensembl_gene_id",
  values = my_gene,
  mart = ensembl
) -> my_res

t(my_res)
                                               [,1]                
ensembl_gene_id                                "ENSG00000206172"   
mmusculus_homolog_ensembl_gene                 "ENSMUSG00000069919"
mmusculus_homolog_associated_gene_name         "Hba-a1"            
mmusculus_homolog_ensembl_peptide              "ENSMUSP00000090897"
mmusculus_homolog_chromosome                   "11"                
mmusculus_homolog_chrom_start                  "32233511"          
mmusculus_homolog_chrom_end                    "32234465"          
mmusculus_homolog_canonical_transcript_protein "ENSP00000322421"   
mmusculus_homolog_subtype                      "Boreoeutheria"     
mmusculus_homolog_orthology_type               "ortholog_many2many"
mmusculus_homolog_perc_id                      "86.6197"           
mmusculus_homolog_perc_id_r1                   "86.6197"           
mmusculus_homolog_goc_score                    "75"                
mmusculus_homolog_wga_coverage                 "0"                 
mmusculus_homolog_orthology_confidence         "1"                 
                                               [,2]                
ensembl_gene_id                                "ENSG00000206172"   
mmusculus_homolog_ensembl_gene                 "ENSMUSG00000069917"
mmusculus_homolog_associated_gene_name         "Hba-a2"            
mmusculus_homolog_ensembl_peptide              "ENSMUSP00000090895"
mmusculus_homolog_chromosome                   "11"                
mmusculus_homolog_chrom_start                  "32246489"          
mmusculus_homolog_chrom_end                    "32247298"          
mmusculus_homolog_canonical_transcript_protein "ENSP00000322421"   
mmusculus_homolog_subtype                      "Boreoeutheria"     
mmusculus_homolog_orthology_type               "ortholog_many2many"
mmusculus_homolog_perc_id                      "86.6197"           
mmusculus_homolog_perc_id_r1                   "86.6197"           
mmusculus_homolog_goc_score                    "25"                
mmusculus_homolog_wga_coverage                 "0"                 
mmusculus_homolog_orthology_confidence         "0"                 

sessionInfo()
R version 4.5.0 (2025-04-11)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 24.04.2 LTS

Matrix products: default
BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 
LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.26.so;  LAPACK version 3.12.0

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

time zone: Etc/UTC
tzcode source: system (glibc)

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] biomaRt_2.64.0  workflowr_1.7.1

loaded via a namespace (and not attached):
 [1] KEGGREST_1.48.1         xfun_0.52               bslib_0.9.0            
 [4] httr2_1.2.1             processx_3.8.6          Biobase_2.68.0         
 [7] callr_3.7.6             vctrs_0.6.5             tools_4.5.0            
[10] ps_1.9.1                generics_0.1.4          curl_6.4.0             
[13] stats4_4.5.0            tibble_3.2.1            AnnotationDbi_1.70.0   
[16] RSQLite_2.4.2           blob_1.2.4              pkgconfig_2.0.3        
[19] dbplyr_2.5.0            S4Vectors_0.46.0        lifecycle_1.0.4        
[22] GenomeInfoDbData_1.2.14 compiler_4.5.0          stringr_1.5.1          
[25] git2r_0.36.2            Biostrings_2.76.0       progress_1.2.3         
[28] getPass_0.2-4           httpuv_1.6.16           GenomeInfoDb_1.44.1    
[31] htmltools_0.5.8.1       sass_0.4.10             yaml_2.3.10            
[34] later_1.4.2             pillar_1.10.2           crayon_1.5.3           
[37] jquerylib_0.1.4         whisker_0.4.1           cachem_1.1.0           
[40] tidyselect_1.2.1        digest_0.6.37           stringi_1.8.7          
[43] purrr_1.0.4             dplyr_1.1.4             rprojroot_2.0.4        
[46] fastmap_1.2.0           cli_3.6.5               magrittr_2.0.3         
[49] withr_3.0.2             filelock_1.0.3          prettyunits_1.2.0      
[52] UCSC.utils_1.4.0        promises_1.3.2          rappdirs_0.3.3         
[55] bit64_4.6.0-1           rmarkdown_2.29          XVector_0.48.0         
[58] httr_1.4.7              bit_4.6.0               png_0.1-8              
[61] hms_1.1.3               memoise_2.0.1           evaluate_1.0.3         
[64] knitr_1.50              IRanges_2.42.0          BiocFileCache_2.16.1   
[67] rlang_1.1.6             Rcpp_1.0.14             glue_1.8.0             
[70] DBI_1.2.3               xml2_1.3.8              BiocGenerics_0.54.0    
[73] rstudioapi_0.17.1       jsonlite_2.0.0          R6_2.6.1               
[76] fs_1.6.6