Last updated: 2026-01-05

Checks: 7 0

Knit directory: muse/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20200712) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 6eafc4d. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rproj.user/
    Ignored:    data/1M_neurons_filtered_gene_bc_matrices_h5.h5
    Ignored:    data/293t/
    Ignored:    data/293t_3t3_filtered_gene_bc_matrices.tar.gz
    Ignored:    data/293t_filtered_gene_bc_matrices.tar.gz
    Ignored:    data/5k_Human_Donor1_PBMC_3p_gem-x_5k_Human_Donor1_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5
    Ignored:    data/5k_Human_Donor2_PBMC_3p_gem-x_5k_Human_Donor2_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5
    Ignored:    data/5k_Human_Donor3_PBMC_3p_gem-x_5k_Human_Donor3_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5
    Ignored:    data/5k_Human_Donor4_PBMC_3p_gem-x_5k_Human_Donor4_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5
    Ignored:    data/97516b79-8d08-46a6-b329-5d0a25b0be98.h5ad
    Ignored:    data/Parent_SC3v3_Human_Glioblastoma_filtered_feature_bc_matrix.tar.gz
    Ignored:    data/brain_counts/
    Ignored:    data/cl.obo
    Ignored:    data/cl.owl
    Ignored:    data/jurkat/
    Ignored:    data/jurkat:293t_50:50_filtered_gene_bc_matrices.tar.gz
    Ignored:    data/jurkat_293t/
    Ignored:    data/jurkat_filtered_gene_bc_matrices.tar.gz
    Ignored:    data/pbmc20k/
    Ignored:    data/pbmc20k_seurat/
    Ignored:    data/pbmc3k.h5ad
    Ignored:    data/pbmc3k/
    Ignored:    data/pbmc3k_bpcells_mat/
    Ignored:    data/pbmc3k_export.mtx
    Ignored:    data/pbmc3k_matrix.mtx
    Ignored:    data/pbmc3k_seurat.rds
    Ignored:    data/pbmc4k_filtered_gene_bc_matrices.tar.gz
    Ignored:    data/pbmc_1k_v3_filtered_feature_bc_matrix.h5
    Ignored:    data/pbmc_1k_v3_raw_feature_bc_matrix.h5
    Ignored:    data/refdata-gex-GRCh38-2020-A.tar.gz
    Ignored:    data/seurat_1m_neuron.rds
    Ignored:    data/t_3k_filtered_gene_bc_matrices.tar.gz
    Ignored:    r_packages_4.4.1/
    Ignored:    r_packages_4.5.0/

Untracked files:
    Untracked:  analysis/bioc.Rmd
    Untracked:  analysis/bioc_scrnaseq.Rmd
    Untracked:  analysis/likelihood.Rmd
    Untracked:  bpcells_matrix/
    Untracked:  data/Caenorhabditis_elegans.WBcel235.113.gtf.gz
    Untracked:  data/GCF_043380555.1-RS_2024_12_gene_ontology.gaf.gz
    Untracked:  data/arab.rds
    Untracked:  data/astronomicalunit.csv
    Untracked:  data/femaleMiceWeights.csv
    Untracked:  data/lung_bcell.rds
    Untracked:  m3/
    Untracked:  women.json

Unstaged changes:
    Modified:   analysis/isoform_switch_analyzer.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/pubmedr.Rmd) and HTML (docs/pubmedr.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 6eafc4d Dave Tang 2026-01-05 Using the pubmedR package

Following the brief demo.

install.packages("pubmedR")
install.packages("bibliometrix")

Load library.

library(pubmedR)
packageVersion("pubmedR")
[1] '0.0.3'

Perform a query.

query <- "bibliometric*[Title/Abstract] AND english[LA] AND Journal Article[PT] AND 2000:2020[DP]"
res <- pmQueryTotalCount(query = query)
res$total_count
[1] 3748

Search field tags:

Affiliation [ad] Full Investigator Name [fir] Pagination [pg]
All Fields [all] Grants and Funding [gr] Personal Name as Subject [ps]
Article Identifier [aid] Investigator [ir] Pharmacological Action [pa]
Author [au] ISBN [isbn] Place of Publication [pl]
Author Identifier [auid] Issue [ip] PMCID and MID
Book [book] Journal [ta] PMID [pmid]
Comment Correction Type Language [la] Publication Date [dp]
Completion Date [dcom] Last Author Name [lastau] Publication Type [pt]
Conflict of Interest Statement [cois] Location ID [lid] Publisher [pubn]
Corporate Author [cn] MeSH Date [mhda] Secondary Source ID [si]
Create Date [crdt] MeSH Major Topic [majr] Subset [sb]
EC/RN Number [rn] MeSH Subheadings [sh] Supplementary Concept [nm]
Editor [ed] MeSH Terms [mh] Text Words [tw]
Entry Date [edat] Modification Date [lr] Title [ti]
Filter [filter] [sb] NLM Unique ID [jid] Title/Abstract [tiab]
First Author Name [1au] Other Term [ot] Transliterated Title [tt]
Full Author Name [fau] Owner Volume [vi]

Search for some dude called Dave Tang.

query <- "Dave Tang[fau]"
res <- pmQueryTotalCount(query = query)
res
$total_count
[1] 22

$query_translation
[1] "tang, dave[Author]"

$web_history
Web history object (QueryKey = 1, WebEnv = MCID_695b52f...)

Download the collection of document metadata.

D <- pmApiRequest(query = query, limit = res$total_count, api_key = NULL)
Documents  22  of  22 
M <- pmApi2df(D)
================================================================================

Use some {bibliometrix} functions to get an overview of the bibliographic collection.

suppressPackageStartupMessages(library(bibliometrix))
M <- convert2df(D, dbsource = "pubmed", format = "api")

Converting your pubmed collection into a bibliographic dataframe

================================================================================
Done!
results <- biblioAnalysis(M)
summary(results)


MAIN INFORMATION ABOUT DATA

 Timespan                              2008 : 2020 
 Sources (Journals, Books, etc)        14 
 Documents                             21 
 Annual Growth Rate %                  0 
 Document Average Age                  12.5 
 Average citations per doc             0 
 Average citations per year per doc    0 
 References                            1 
 
DOCUMENT TYPES                     
 case reports           2 
 comparative study      1 
 dataset                1 
 journal article        17 
 
DOCUMENT CONTENTS
 Keywords Plus (ID)                    179 
 Author's Keywords (DE)                28 
 
AUTHORS
 Authors                               194 
 Author Appearances                    269 
 Authors of single-authored docs       0 
 
AUTHORS COLLABORATION
 Single-authored docs                  0 
 Documents per Author                  0.108 
 Co-Authors per Doc                    12.8 
 International co-authorships %        0 
 

Annual Scientific Production

 Year    Articles
    2008        2
    2009        3
    2010        2
    2011        1
    2012        2
    2014        1
    2015        1
    2016        4
    2017        2
    2018        1
    2020        2

Annual Percentage Growth Rate 0 


Most Productive Authors

   Authors        Articles Authors        Articles Fractionalized
1    TANG D             17   TANG D                         1.673
2    LASSMANN T          6   CARNINCI P                     0.680
3    CARNINCI P          5   TANG DT                        0.597
4    GRIMMOND SM         5   GRIMMOND SM                    0.474
5    BLACKWELL JM        4   SAXENA A                       0.444
6    CHIU HS             4   LASSMANN T                     0.410
7    LITTLE MH           4   CHIU HS                        0.331
8    TANG DT             4   LITTLE MH                      0.331
9    ANDERSON D          3   BLACKWELL JM                   0.308
10   GEORGAS KM          3   ANDERSON D                     0.303


Top manuscripts per citations

                                 Paper                                 DOI TC TCperYear NTC
1  LASSMANN T, 2020, NPJ GENOM MED              10.1038/s41525-020-00161-w  0         0 NaN
2  ANDERSON D, 2020, SCI REP                    10.1038/s41598-020-76157-4  0         0 NaN
3  BERTUZZI M, 2018, HUM MUTAT                  10.1002/humu.23974          0         0 NaN
4  TANG D, 2017, SCI REP                        10.1038/s41598-018-29279-9  0         0 NaN
5  ROTHACKER KM, 2017, INT J PEDIATR ENDOCRINOL 10.1186/s13633-018-0056-3   0         0 NaN
6  ROUDNICKY F, 2016, J PATHOL                  10.1002/path.4892           0         0 NaN
7  HON CC, 2016, NATURE                         10.1038/nature21374         0         0 NaN
8  ABRAHAM MB, 2016, INT J PEDIATR ENDOCRINOL   10.1186/s13633-016-0041-7   0         0 NaN
9  BAYNAM G, 2016, ORPHANET J RARE DIS          10.1186/s13023-016-0462-7   0         0 NaN
10 TANG D, 2015, SCI DATA                       10.1038/sdata.2016.23       0         0 NaN


Corresponding Author's Countries

  Country Articles Freq SCP MCP MCP_Ratio
1      NA       21    1  21   0         0


SCP: Single Country Publications

MCP: Multiple Country Publications


Total Citations per Country

  Country      Total Citations Average Article Citations
1           NA               0                         0


Most Relevant Sources

                                     Sources        Articles
1  SCIENTIFIC REPORTS                                      3
2  BMC GENOMICS                                            2
3  DEVELOPMENTAL BIOLOGY                                   2
4  INTERNATIONAL JOURNAL OF PEDIATRIC ENDOCRINOLOGY        2
5  NATURE                                                  2
6  PLOS ONE                                                2
7  BIOINFORMATICS (OXFORD ENGLAND)                         1
8  DISEASE MARKERS                                         1
9  HUMAN MUTATION                                          1
10 NPJ GENOMIC MEDICINE                                    1


Most Relevant Keywords

     Author Keywords (DE)      Articles                Keywords-Plus (ID)     Articles
1  ANGIOGENESIS                       1 ANIMALS                                     11
2  BLADDER CANCER                     1 HUMANS                                      11
3  BLOOD TRANSCRIPTOMICS              1 MICE                                         8
4  CLINICAL BEST PRACTICE             1 GENOMICS                                     5
5  DESERT HEDGEHOG                    1 GENE EXPRESSION PROFILING                    4
6  DHH                                1 GENOME-WIDE ASSOCIATION STUDY                4
7  DIAGNOSIS                          1 HIGH-THROUGHPUT NUCLEOTIDE SEQUENCING        4
8  DIAGNOSTIC ODYSSEY                 1 POLYMORPHISM  SINGLE NUCLEOTIDE              4
9  DISORDER OF SEX DEVELOPMENT        1 SEQUENCE ANALYSIS  RNA                       4
10 FAM111A GENE                       1 AUSTRALIA                                    3

sessionInfo()
R version 4.5.0 (2025-04-11)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 24.04.3 LTS

Matrix products: default
BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 
LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.26.so;  LAPACK version 3.12.0

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C               LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8    LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C             LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

time zone: Etc/UTC
tzcode source: system (glibc)

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] bibliometrix_5.0.1 pubmedR_0.0.3      lubridate_1.9.4    forcats_1.0.0      stringr_1.5.1      dplyr_1.1.4       
 [7] purrr_1.0.4        readr_2.1.5        tidyr_1.3.1        tibble_3.3.0       ggplot2_3.5.2      tidyverse_2.0.0   
[13] workflowr_1.7.1   

loaded via a namespace (and not attached):
 [1] tidyselect_1.2.1       viridisLite_0.4.2      farver_2.1.2           fastmap_1.2.0          lazyeval_0.2.2        
 [6] janeaustenr_1.0.0      promises_1.3.3         XML_3.99-0.18          digest_0.6.37          timechange_0.3.0      
[11] mime_0.13              lifecycle_1.0.4        tokenizers_0.3.0       processx_3.8.6         magrittr_2.0.3        
[16] compiler_4.5.0         rlang_1.1.6            sass_0.4.10            tools_4.5.0            igraph_2.1.4          
[21] yaml_2.3.10            tidytext_0.4.2         data.table_1.17.4      knitr_1.50             htmlwidgets_1.6.4     
[26] curl_6.4.0             plyr_1.8.9             RColorBrewer_1.1-3     ca_0.71.1              withr_3.0.2           
[31] grid_4.5.0             git2r_0.36.2           xtable_1.8-4           scales_1.4.0           cli_3.6.5             
[36] rmarkdown_2.29         generics_0.1.4         stringdist_0.9.15      rstudioapi_0.17.1      httr_1.4.7            
[41] tzdb_0.5.0             visNetwork_2.1.2       readxl_1.4.5           cachem_1.1.0           rscopus_0.8.1         
[46] parallel_4.5.0         cellranger_1.1.0       vctrs_0.6.5            Matrix_1.7-3           jsonlite_2.0.0        
[51] callr_3.7.6            hms_1.1.3              ggrepel_0.9.6          plotly_4.11.0          jquerylib_0.1.4       
[56] glue_1.8.0             ps_1.9.1               DT_0.33                stringi_1.8.7          gtable_0.3.6          
[61] later_1.4.2            pillar_1.10.2          htmltools_0.5.8.1      bibliometrixData_0.3.0 R6_2.6.1              
[66] rprojroot_2.0.4        evaluate_1.0.3         shiny_1.11.1           lattice_0.22-6         rentrez_1.2.4         
[71] SnowballC_0.7.1        openxlsx_4.2.8         openalexR_2.0.1        httpuv_1.6.16          bslib_0.9.0           
[76] Rcpp_1.0.14            zip_2.3.3              whisker_0.4.1          dimensionsR_0.0.3      xfun_0.52             
[81] fs_1.6.6               getPass_0.2-4          pkgconfig_2.0.3