Last updated: 2025-03-05
Checks: 7 0
Knit directory: muse/
This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20200712)
was run prior to running
the code in the R Markdown file. Setting a seed ensures that any results
that rely on randomness, e.g. subsampling or permutations, are
reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 78c20ac. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for
the analysis have been committed to Git prior to generating the results
(you can use wflow_publish
or
wflow_git_commit
). workflowr only checks the R Markdown
file, but you know if there are other scripts or data files that it
depends on. Below is the status of the Git repository when the results
were generated:
Ignored files:
Ignored: .Rproj.user/
Ignored: data/1M_neurons_filtered_gene_bc_matrices_h5.h5
Ignored: data/293t/
Ignored: data/293t_3t3_filtered_gene_bc_matrices.tar.gz
Ignored: data/293t_filtered_gene_bc_matrices.tar.gz
Ignored: data/5k_Human_Donor1_PBMC_3p_gem-x_5k_Human_Donor1_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5
Ignored: data/5k_Human_Donor2_PBMC_3p_gem-x_5k_Human_Donor2_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5
Ignored: data/5k_Human_Donor3_PBMC_3p_gem-x_5k_Human_Donor3_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5
Ignored: data/5k_Human_Donor4_PBMC_3p_gem-x_5k_Human_Donor4_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5
Ignored: data/Parent_SC3v3_Human_Glioblastoma_filtered_feature_bc_matrix.tar.gz
Ignored: data/brain_counts/
Ignored: data/cl.obo
Ignored: data/cl.owl
Ignored: data/jurkat/
Ignored: data/jurkat:293t_50:50_filtered_gene_bc_matrices.tar.gz
Ignored: data/jurkat_293t/
Ignored: data/jurkat_filtered_gene_bc_matrices.tar.gz
Ignored: data/pbmc20k/
Ignored: data/pbmc20k_seurat/
Ignored: data/pbmc3k/
Ignored: data/pbmc4k_filtered_gene_bc_matrices.tar.gz
Ignored: data/pbmc_1k_v3_raw_feature_bc_matrix.h5
Ignored: data/refdata-gex-GRCh38-2020-A.tar.gz
Ignored: data/seurat_1m_neuron.rds
Ignored: data/t_3k_filtered_gene_bc_matrices.tar.gz
Ignored: r_packages_4.4.1/
Untracked files:
Untracked: analysis/bioc_scrnaseq.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were
made to the R Markdown (analysis/sce.Rmd
) and HTML
(docs/sce.html
) files. If you’ve configured a remote Git
repository (see ?wflow_git_remote
), click on the hyperlinks
in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 78c20ac | Dave Tang | 2025-03-05 | The SingleCellExperiment class |
From Introduction to Single-Cell Analysis with Bioconductor:
… the SingleCellExperiment class (from the SingleCellExperiment package) serves as the common currency for data exchange across 70+ single-cell-related Bioconductor packages. This class implements a data structure that stores all aspects of our single-cell data - gene-by-cell expression data, per-cell metadata and per-gene annotation (Figure 4.1) - and manipulate them in a synchronized manner.
Install Bioconductor packages using
BiocManager::install()
.
if (!require("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install("SingleCellExperiment")
BiocManager::install("TENxIO")
install.packages("hdf5r")
install.packages("Seurat")
Load libraries.
suppressPackageStartupMessages(library(SingleCellExperiment))
suppressPackageStartupMessages(library(TENxIO))
suppressPackageStartupMessages(library(hdf5r))
suppressPackageStartupMessages(library(Seurat))
Download data.
outdir <- 'data/'
pbmc5k_1_url <- "https://cf.10xgenomics.com/samples/cell-exp/9.0.0/5k_Human_Donor1_PBMC_3p_gem-x_5k_Human_Donor1_PBMC_3p_gem-x/5k_Human_Donor1_PBMC_3p_gem-x_5k_Human_Donor1_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5"
pbmc5k_2_url <- "https://cf.10xgenomics.com/samples/cell-exp/9.0.0/5k_Human_Donor2_PBMC_3p_gem-x_5k_Human_Donor2_PBMC_3p_gem-x/5k_Human_Donor2_PBMC_3p_gem-x_5k_Human_Donor2_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5"
pbmc5k_1_h5 <- paste0(outdir, basename(pbmc5k_1_url))
pbmc5k_2_h5 <- paste0(outdir, basename(pbmc5k_2_url))
download_file <- function(url, outfile){
fn <- basename(url)
if(file.exists(outfile) == FALSE){
download.file(url, destfile = outfile)
} else {
message(paste0(outfile, " already exists"))
}
}
download_file(pbmc5k_1_url, pbmc5k_1_h5)
data/5k_Human_Donor1_PBMC_3p_gem-x_5k_Human_Donor1_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5 already exists
download_file(pbmc5k_2_url, pbmc5k_2_h5)
data/5k_Human_Donor2_PBMC_3p_gem-x_5k_Human_Donor2_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5 already exists
Create SingleCellExperiment
files.
create_sce_obj <- function(h5){
con <- TENxH5(h5)
import(con)
}
pbmc5k_1 <- create_sce_obj(pbmc5k_1_h5)
Warning in rhdf5::h5read(file, name = paste0(group, ranges), index = list(1L),
: Object 'matrix/features/interval' does not exist in this HDF5 file.
pbmc5k_1
class: SingleCellExperiment
dim: 38606 5710
metadata(1): TENxFile
assays(1): counts
rownames(38606): ENSG00000290825 ENSG00000243485 ... ENSG00000278817
ENSG00000277196
rowData names(3): ID Symbol Type
colnames(5710): AAACCAAAGGTGACGA-1 AAACCCTGTGACGAGT-1 ...
TGTGTTAGTCAATCGT-1 TGTGTTGAGGATCTCA-1
colData names(0):
reducedDimNames(0):
mainExpName: Gene Expression
altExpNames(0):
Seurat object.
min_cells <- 10
min_features <- 500
pbmc5k_1_seurat <- Seurat::CreateSeuratObject(
counts = Seurat::Read10X_h5(pbmc5k_1_h5),
min.cells = min_cells,
min.features = min_features
)
pbmc5k_1_seurat
An object of class Seurat
20935 features across 5672 samples within 1 assay
Active assay: RNA (20935 features, 0 variable features)
1 layer present: counts
Filter SingleCellExperiment
object in the same way; the
order and manner of filtering is important or else you can not reproduce
Seurat’s behaviour.
filter_sce <- function(sce, min.features, min.cells){
detected_genes_in_bcs <- colSums(counts(sce) > 0)
sce <- sce[, detected_genes_in_bcs >= min.features]
detected_genes <- rowSums(counts(sce) > 0)
sce <- sce[detected_genes >= min.cells, ]
sce
}
pbmc5k_1_filtered <- filter_sce(pbmc5k_1, min_features, min_cells)
pbmc5k_1_filtered
class: SingleCellExperiment
dim: 20935 5672
metadata(1): TENxFile
assays(1): counts
rownames(20935): ENSG00000238009 ENSG00000241860 ... ENSG00000271254
ENSG00000278817
rowData names(3): ID Symbol Type
colnames(5672): AAACCAAAGGTGACGA-1 AAACCCTGTGACGAGT-1 ...
TGTGTTAGTCAATCGT-1 TGTGTTGAGGATCTCA-1
colData names(0):
reducedDimNames(0):
mainExpName: Gene Expression
altExpNames(0):
Compare barcodes.
all(colnames(pbmc5k_1_seurat) == colnames(pbmc5k_1_filtered))
[1] TRUE
sessionInfo()
R version 4.4.1 (2024-06-14)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 22.04.5 LTS
Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so; LAPACK version 3.10.0
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
time zone: Etc/UTC
tzcode source: system (glibc)
attached base packages:
[1] stats4 stats graphics grDevices utils datasets methods
[8] base
other attached packages:
[1] Seurat_5.1.0 SeuratObject_5.0.2
[3] sp_2.1-4 hdf5r_1.3.11
[5] TENxIO_1.8.2 SingleCellExperiment_1.28.1
[7] SummarizedExperiment_1.36.0 Biobase_2.66.0
[9] GenomicRanges_1.58.0 GenomeInfoDb_1.42.3
[11] IRanges_2.40.1 S4Vectors_0.44.0
[13] BiocGenerics_0.52.0 MatrixGenerics_1.18.1
[15] matrixStats_1.4.1 workflowr_1.7.1
loaded via a namespace (and not attached):
[1] RcppAnnoy_0.0.22 splines_4.4.1 later_1.3.2
[4] BiocIO_1.16.0 tibble_3.2.1 R.oo_1.26.0
[7] polyclip_1.10-7 fastDummies_1.7.4 lifecycle_1.0.4
[10] rprojroot_2.0.4 globals_0.16.3 processx_3.8.4
[13] lattice_0.22-6 MASS_7.3-60.2 magrittr_2.0.3
[16] plotly_4.10.4 sass_0.4.9 rmarkdown_2.28
[19] jquerylib_0.1.4 yaml_2.3.10 httpuv_1.6.15
[22] sctransform_0.4.1 spam_2.11-0 spatstat.sparse_3.1-0
[25] reticulate_1.39.0 cowplot_1.1.3 pbapply_1.7-2
[28] RColorBrewer_1.1-3 abind_1.4-8 zlibbioc_1.52.0
[31] Rtsne_0.17 purrr_1.0.2 R.utils_2.12.3
[34] git2r_0.35.0 GenomeInfoDbData_1.2.13 ggrepel_0.9.6
[37] irlba_2.3.5.1 listenv_0.9.1 spatstat.utils_3.1-0
[40] goftest_1.2-3 RSpectra_0.16-2 spatstat.random_3.3-2
[43] fitdistrplus_1.2-1 parallelly_1.38.0 leiden_0.4.3.1
[46] codetools_0.2-20 DelayedArray_0.32.0 tidyselect_1.2.1
[49] UCSC.utils_1.2.0 farver_2.1.2 spatstat.explore_3.3-3
[52] jsonlite_1.8.9 progressr_0.15.0 ggridges_0.5.6
[55] survival_3.6-4 tools_4.4.1 ica_1.0-3
[58] Rcpp_1.0.13 glue_1.8.0 gridExtra_2.3
[61] SparseArray_1.6.1 BiocBaseUtils_1.8.0 xfun_0.48
[64] HDF5Array_1.34.0 dplyr_1.1.4 fastmap_1.2.0
[67] rhdf5filters_1.18.0 fansi_1.0.6 callr_3.7.6
[70] digest_0.6.37 R6_2.5.1 mime_0.12
[73] colorspace_2.1-1 scattermore_1.2 tensor_1.5
[76] spatstat.data_3.1-2 R.methodsS3_1.8.2 utf8_1.2.4
[79] tidyr_1.3.1 generics_0.1.3 data.table_1.16.2
[82] httr_1.4.7 htmlwidgets_1.6.4 S4Arrays_1.6.0
[85] whisker_0.4.1 uwot_0.2.2 pkgconfig_2.0.3
[88] gtable_0.3.6 lmtest_0.9-40 XVector_0.46.0
[91] htmltools_0.5.8.1 dotCall64_1.2 scales_1.3.0
[94] png_0.1-8 spatstat.univar_3.0-1 knitr_1.48
[97] rstudioapi_0.17.1 tzdb_0.4.0 reshape2_1.4.4
[100] nlme_3.1-164 cachem_1.1.0 zoo_1.8-12
[103] rhdf5_2.50.2 stringr_1.5.1 KernSmooth_2.23-24
[106] parallel_4.4.1 miniUI_0.1.1.1 pillar_1.9.0
[109] grid_4.4.1 vctrs_0.6.5 RANN_2.6.2
[112] promises_1.3.0 xtable_1.8-4 cluster_2.1.6
[115] evaluate_1.0.1 readr_2.1.5 cli_3.6.3
[118] compiler_4.4.1 rlang_1.1.4 crayon_1.5.3
[121] future.apply_1.11.3 ps_1.8.1 getPass_0.2-4
[124] plyr_1.8.9 fs_1.6.4 stringi_1.8.4
[127] viridisLite_0.4.2 deldir_2.0-4 munsell_0.5.1
[130] lazyeval_0.2.2 spatstat.geom_3.3-3 Matrix_1.7-0
[133] RcppHNSW_0.6.0 hms_1.1.3 patchwork_1.3.0
[136] bit64_4.5.2 future_1.34.0 Rhdf5lib_1.28.0
[139] ggplot2_3.5.1 shiny_1.9.1 ROCR_1.0-11
[142] igraph_2.1.1 bslib_0.8.0 bit_4.5.0