Last updated: 2021-01-30

Checks: 7 0

Knit directory: muse/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20200712) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 909d437. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/.Rhistory

Untracked files:
    Untracked:  analysis/cluster_profiler.Rmd
    Untracked:  analysis/linear_regression.Rmd
    Untracked:  data/gencode.v36.annotation.gtf.gz

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/go_enrichment.Rmd) and HTML (docs/go_enrichment.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 909d437 davetang 2021-01-30 compareCluster function
html 22ec290 davetang 2021-01-28 Build site.
Rmd 9cf163e davetang 2021-01-28 GO primer and included visualisations
html 795f0f4 davetang 2021-01-27 Build site.
Rmd 3c146e5 davetang 2021-01-27 Include clusterProfiler
html 1cd1577 davetang 2021-01-27 Build site.
Rmd 687a6ca davetang 2021-01-27 Gene Ontology Enrichment Analysis

Getting started

The Gene Ontology Enrichment Analysis (GOEA) is a typical analysis carried out on transcriptome data. Online tools for performing a GOEA include DAVID, Enrichr, and PANTHER just to name a few. While web-based tools are easy to use, it becomes tedious when you have to analyse (or re-analyse) lots of datasets. Therefore, it is preferable to use a programmatic approach and in this post we will check out some Bioconductor packages that allow to perform a GOEA.

First install the following packages, if necessary, and then load them.

if (!requireNamespace("BiocManager", quietly = TRUE))
    install.packages("BiocManager")

my_packages <- c("clusterProfiler",
                 "GOstats",
                 "GO.db",
                 "org.Hs.eg.db")

to_install <- my_packages[!my_packages %in% installed.packages()]

# install missing packages, if any
if (length(to_install) > 0){
  BiocManager::install(pkgs = to_install)
}

# load all packages and suppress output of sapply
invisible(sapply(my_packages, library, character.only = TRUE))

Create a positive control where the gene set are composed of genes that are all associated with GO:0007411 (axon guidance); we will use the org.Hs.eg.db package to achieve this based on the vignette.

Methods that can be applied to AnnotationDbi objects such as org.Hs.eg.db include: columns, keytypes, keys, and select.

Use columns to find out what data can be retrived using select.

columns(org.Hs.eg.db)
 [1] "ACCNUM"       "ALIAS"        "ENSEMBL"      "ENSEMBLPROT"  "ENSEMBLTRANS"
 [6] "ENTREZID"     "ENZYME"       "EVIDENCE"     "EVIDENCEALL"  "GENENAME"    
[11] "GO"           "GOALL"        "IPI"          "MAP"          "OMIM"        
[16] "ONTOLOGY"     "ONTOLOGYALL"  "PATH"         "PFAM"         "PMID"        
[21] "PROSITE"      "REFSEQ"       "SYMBOL"       "UCSCKG"       "UNIGENE"     
[26] "UNIPROT"     

Use keytypes to find out what fields we can use as keys to query the database.

keytypes(org.Hs.eg.db)
 [1] "ACCNUM"       "ALIAS"        "ENSEMBL"      "ENSEMBLPROT"  "ENSEMBLTRANS"
 [6] "ENTREZID"     "ENZYME"       "EVIDENCE"     "EVIDENCEALL"  "GENENAME"    
[11] "GO"           "GOALL"        "IPI"          "MAP"          "OMIM"        
[16] "ONTOLOGY"     "ONTOLOGYALL"  "PATH"         "PFAM"         "PMID"        
[21] "PROSITE"      "REFSEQ"       "SYMBOL"       "UCSCKG"       "UNIGENE"     
[26] "UNIPROT"     

Select all genes with GO:0007411.

go_to_entrez <- select(org.Hs.eg.db,
                       keys = "GO:0007411",
                       columns = "ENTREZID",
                       keytype = "GO")
'select()' returned 1:many mapping between keys and columns
axon_gene <- unique(go_to_entrez$ENTREZID)
length(axon_gene)
[1] 205

Note that we can also use select on GO.db to fetch more information on GO:0007411.

select(GO.db,
       keys = "GO:0007411",
       columns = columns(GO.db),
       keytype = "GOID")
'select()' returned 1:1 mapping between keys and columns
        GOID
1 GO:0007411
                                                                                                                                                         DEFINITION
1 The chemotaxis process that directs the migration of an axon growth cone to a specific target site in response to a combination of attractive and repulsive cues.
  ONTOLOGY          TERM
1       BP axon guidance

To perform the GOEA we need to create a gene background called the universe and we will use all genes with a GO term. Normally the universe should be the list of genes that were actually assayed in your transcriptome analysis.

all_go_terms <- keys(org.Hs.eg.db, keytype = "GO")
all_go <- select(org.Hs.eg.db, keys = all_go_terms, columns = c("ENTREZID", "GO"), keytype = "GO")
'select()' returned 1:many mapping between keys and columns
universe <- unique(all_go$ENTREZID)
length(universe)
[1] 20488

The function hyperGTest will perform the GOEA based on a set of parameters; in this example, we are testing for the over-representation of biological process (BP) terms and using a p-value cutoff of 0.001 or less.

params <- new('GOHyperGParams',
              geneIds = axon_gene,
              universeGeneIds = universe,
              ontology = 'BP',
              pvalueCutoff = 0.001,
              conditional = FALSE,
              testDirection = 'over',
              annotation = "org.Hs.eg.db"
             )
 
my_test <- hyperGTest(params)
my_test
Gene to GO BP  test for over-representation 
4723 GO BP ids tested (1069 have p < 0.001)
Selected gene set size: 205 
    Gene universe size: 18670 
    Annotation package: org.Hs.eg 

Use summary to get a summary of the results. The summary contains the GOID, Pvalue, OddsRatio, ExpCount, Count, and Size.

  • ExpCount is the expected count
  • Count is how many instances of that term were actually observed in your gene list
  • Size is the number that could have been found in your gene list if every instance had turned up
head(summary(my_test))
      GOBPID       Pvalue OddsRatio ExpCount Count Size
1 GO:0007409  0.00000e+00       Inf 5.138725   205  468
2 GO:0007411  0.00000e+00       Inf 3.030530   205  276
3 GO:0048667  0.00000e+00       Inf 6.401446   205  583
4 GO:0061564  0.00000e+00       Inf 5.643814   205  514
5 GO:0097485  0.00000e+00       Inf 3.041510   205  277
6 GO:0006935 6.87054e-316       Inf 7.071237   205  644
                                                   Term
1                                          axonogenesis
2                                         axon guidance
3 cell morphogenesis involved in neuron differentiation
4                                      axon development
5                            neuron projection guidance
6                                            chemotaxis

GO terms associated to axons are enriched as expected. Note that the Count and Size for GO:0007411 is not identical even though we had selected all genes associated with GO:0007411. If we manually select Entrez gene IDs using org.Hs.egGO, we still get the same list of genes.

my_df <- as.data.frame(org.Hs.egGO)
my_idx <- my_df$go_id == "GO:0007411"
length(unique(my_df[my_idx, "gene_id"])) == length(axon_gene)
[1] TRUE

This is probably because genes containing GO terms that are descendants of GO:0007411 are also included.

Relations in the Gene Ontology

Gene ontologies (GO) are structured as a directed acyclic graph with GO terms as nodes and their relationships as edges. The most commonly used relationships in GO are:

  • is a
  • part of
  • has part
  • regulates
  • negatively regulates
  • positively regulates

Below is an example of the is a and part of relationships.

We can use the GOBPCHILDREN annotation map or Bimap from the GO.db package to retrieve all descendants of GO:0007411.

bp_children <- as.list(GOBPCHILDREN)
bp_children[["GO:0007411"]]
                 isa              part of                  isa 
        "GO:0008045"         "GO:0016198"         "GO:0021966" 
                 isa                  isa                  isa 
        "GO:0021967"         "GO:0021968"         "GO:0021969" 
                 isa                  isa                  isa 
        "GO:0021970"         "GO:0021971"         "GO:0021972" 
                 isa                  isa                  isa 
        "GO:0031290"         "GO:0033563"         "GO:0033564" 
                 isa                  isa              part of 
        "GO:0036514"         "GO:0036515"         "GO:0048846" 
             part of              part of                  isa 
        "GO:0061642"         "GO:0061643"         "GO:0071678" 
                 isa                  isa                  isa 
        "GO:0071679"         "GO:0072499"         "GO:0097374" 
                 isa                  isa              part of 
        "GO:0097376"         "GO:0097492"         "GO:1902287" 
             part of            regulates negatively regulates 
        "GO:1902378"         "GO:1902667"         "GO:1902668" 
positively regulates              part of              part of 
        "GO:1902669"         "GO:1904938"         "GO:2001266" 

We can include these GO terms in our select query.

my_keys <- c("GO:0007411", bp_children[["GO:0007411"]])

go_to_entrez_children <- select(org.Hs.eg.db,
                                keys = my_keys,
                                columns = "ENTREZID",
                                keytype = "GO")
'select()' returned 1:many mapping between keys and columns
length(unique(go_to_entrez_children$ENTREZID))
[1] 261

We are still missing some genes that are associated with GO:0007411, which is probably due to the exclusion of descendants in the descendants of GO:0007411. We need to recursively search all terms that are descendants of GO:0007411.

params <- new('GOHyperGParams',
              geneIds = unique(go_to_entrez_children$ENTREZID),
              universeGeneIds = universe,
              ontology = 'BP',
              pvalueCutoff = 0.001,
              conditional = FALSE,
              testDirection = 'over',
              annotation = "org.Hs.eg.db"
             )
Warning in makeValidParams(.Object): removing geneIds not in universeGeneIds
my_test2 <- hyperGTest(params)
head(summary(my_test2))
      GOBPID Pvalue OddsRatio  ExpCount Count Size
1 GO:0000902      0       Inf 14.399572   260 1034
2 GO:0000904      0       Inf 10.361007   260  744
3 GO:0006935      0       Inf  8.968399   260  644
4 GO:0007409      0       Inf  6.517408   260  468
5 GO:0007411      0       Inf  3.843599   260  276
6 GO:0031175      0       Inf 13.619711   260  978
                                            Term
1                             cell morphogenesis
2 cell morphogenesis involved in differentiation
3                                     chemotaxis
4                                   axonogenesis
5                                  axon guidance
6                  neuron projection development

clusterProfiler

The enrichGO function in the clusterProfiler package can also perform a GOEA with FDR control.

my_test3 <- enrichGO(axon_gene,
                     org.Hs.eg.db,
                     keyType = "ENTREZID",
                     ont = "BP",
                     pvalueCutoff = 0.001,
                     pAdjustMethod = "BH",
                     universe,
                     qvalueCutoff = 0.1,
                     minGSSize = 10,
                     maxGSSize = 500,
                     readable = FALSE)

head(data.frame(my_test3))
                   ID                                 Description GeneRatio
GO:0007409 GO:0007409                                axonogenesis   205/205
GO:0007411 GO:0007411                               axon guidance   205/205
GO:0097485 GO:0097485                  neuron projection guidance   205/205
GO:0050770 GO:0050770                  regulation of axonogenesis    41/205
GO:0008038 GO:0008038                          neuron recognition    27/205
GO:0010975 GO:0010975 regulation of neuron projection development    56/205
             BgRatio       pvalue     p.adjust       qvalue
GO:0007409 468/18670 0.000000e+00 0.000000e+00 0.000000e+00
GO:0007411 276/18670 0.000000e+00 0.000000e+00 0.000000e+00
GO:0097485 277/18670 0.000000e+00 0.000000e+00 0.000000e+00
GO:0050770 183/18670 2.592496e-42 2.143346e-39 1.300341e-39
GO:0008038  48/18670 3.898825e-41 2.578683e-38 1.564455e-38
GO:0010975 499/18670 1.042084e-40 5.743620e-38 3.484583e-38
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    geneID
GO:0007409 323/474/627/655/682/1002/1400/1436/1600/1630/1796/1808/1826/1855/1942/1943/1944/1945/1946/1947/1948/1949/1969/2041/2042/2043/2044/2045/2046/2047/2048/2049/2050/2051/2115/2131/2297/2534/2549/2625/2637/2668/2674/2675/2676/2736/2737/2817/2885/2886/2887/2909/3730/3798/3800/3897/3908/3913/4009/4089/4147/4628/4684/4756/4902/4914/4917/4983/5015/5080/5290/5291/5293/5295/5335/5458/5578/5588/5594/5595/5598/5623/5649/5747/5781/5786/5800/5818/5909/5979/6091/6092/6259/6324/6387/6405/6464/6469/6477/6585/6586/6654/6708/6709/6710/6711/6712/6714/6900/7080/7143/7204/7408/7430/7436/7473/7474/7852/7869/8013/8399/8609/8633/8660/8828/8829/8851/9046/9048/9211/9252/9260/9353/9355/9369/9378/9499/9637/9638/9846/10048/10371/10381/10500/10505/10512/10678/10752/10818/11023/11127/11313/23022/23032/23114/23191/23767/23768/26999/27020/27255/30011/51332/51466/53358/54538/55715/55740/55816/56896/57408/57453/57549/57556/57731/59277/59352/64096/64221/64855/84665/85358/89780/90249/91624/91653/128434/133418/137970/151449/152330/170302/219699/220164/223117/283297/284217/284656/285220/374946/375790/389549/644168/654429/729920
GO:0007411 323/474/627/655/682/1002/1400/1436/1600/1630/1796/1808/1826/1855/1942/1943/1944/1945/1946/1947/1948/1949/1969/2041/2042/2043/2044/2045/2046/2047/2048/2049/2050/2051/2115/2131/2297/2534/2549/2625/2637/2668/2674/2675/2676/2736/2737/2817/2885/2886/2887/2909/3730/3798/3800/3897/3908/3913/4009/4089/4147/4628/4684/4756/4902/4914/4917/4983/5015/5080/5290/5291/5293/5295/5335/5458/5578/5588/5594/5595/5598/5623/5649/5747/5781/5786/5800/5818/5909/5979/6091/6092/6259/6324/6387/6405/6464/6469/6477/6585/6586/6654/6708/6709/6710/6711/6712/6714/6900/7080/7143/7204/7408/7430/7436/7473/7474/7852/7869/8013/8399/8609/8633/8660/8828/8829/8851/9046/9048/9211/9252/9260/9353/9355/9369/9378/9499/9637/9638/9846/10048/10371/10381/10500/10505/10512/10678/10752/10818/11023/11127/11313/23022/23032/23114/23191/23767/23768/26999/27020/27255/30011/51332/51466/53358/54538/55715/55740/55816/56896/57408/57453/57549/57556/57731/59277/59352/64096/64221/64855/84665/85358/89780/90249/91624/91653/128434/133418/137970/151449/152330/170302/219699/220164/223117/283297/284217/284656/285220/374946/375790/389549/644168/654429/729920
GO:0097485 323/474/627/655/682/1002/1400/1436/1600/1630/1796/1808/1826/1855/1942/1943/1944/1945/1946/1947/1948/1949/1969/2041/2042/2043/2044/2045/2046/2047/2048/2049/2050/2051/2115/2131/2297/2534/2549/2625/2637/2668/2674/2675/2676/2736/2737/2817/2885/2886/2887/2909/3730/3798/3800/3897/3908/3913/4009/4089/4147/4628/4684/4756/4902/4914/4917/4983/5015/5080/5290/5291/5293/5295/5335/5458/5578/5588/5594/5595/5598/5623/5649/5747/5781/5786/5800/5818/5909/5979/6091/6092/6259/6324/6387/6405/6464/6469/6477/6585/6586/6654/6708/6709/6710/6711/6712/6714/6900/7080/7143/7204/7408/7430/7436/7473/7474/7852/7869/8013/8399/8609/8633/8660/8828/8829/8851/9046/9048/9211/9252/9260/9353/9355/9369/9378/9499/9637/9638/9846/10048/10371/10381/10500/10505/10512/10678/10752/10818/11023/11127/11313/23022/23032/23114/23191/23767/23768/26999/27020/27255/30011/51332/51466/53358/54538/55715/55740/55816/56896/57408/57453/57549/57556/57731/59277/59352/64096/64221/64855/84665/85358/89780/90249/91624/91653/128434/133418/137970/151449/152330/170302/219699/220164/223117/283297/284217/284656/285220/374946/375790/389549/644168/654429/729920
GO:0050770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          627/1002/1600/1630/1808/1826/1942/1946/1949/2043/2045/2048/2049/2909/3897/5458/5747/5800/5979/6091/6092/6259/6387/6405/6900/7143/7473/7474/7869/8829/8851/9353/10371/10500/10505/10512/23191/57556/89780/223117/374946
GO:0008038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           682/1826/1949/2042/2043/2048/2049/2909/6091/6092/6900/7852/8829/8851/10371/23022/27020/27255/54538/57453/57549/64221/84665/91624/128434/133418/152330
GO:0010975                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              627/655/1002/1400/1600/1630/1808/1826/1855/1942/1946/1948/1949/2042/2043/2045/2048/2049/2534/2625/2909/3897/4914/5458/5649/5747/5800/5979/6091/6092/6259/6324/6387/6405/6900/7143/7436/7473/7474/7852/7869/8829/8851/9353/9638/10371/10500/10505/10512/23191/27020/57556/85358/89780/223117/374946
           Count
GO:0007409   205
GO:0007411   205
GO:0097485   205
GO:0050770    41
GO:0008038    27
GO:0010975    56

The output now includes adjusted p-values and the geneIDs that are associated with a given GO ID. Note that the full list of genes for GO:0007411 is 276 again.

In addition to performing the GOEA, clusterProfiler also has some nice plotting functions.

Bar plot showing each enriched GO term coloured by the adjusted p-value.

barplot(my_test3, showCategory=10)

Version Author Date
22ec290 davetang 2021-01-28

Dot plot showing each enriched GO term with associated statistics.

dotplot(my_test3, showCategory=10)

Version Author Date
22ec290 davetang 2021-01-28

Heat plot showing the enriched GO terms on the y-axis and the genes on the x-axis. Genes with the associated GO term are highlighted.

heatplot(my_test3, showCategory=10)

Version Author Date
22ec290 davetang 2021-01-28

Enrichment map organises enriched terms into a network with edges connecting overlapping gene sets.

emapplot(my_test3, showCategory = 10)

Version Author Date
22ec290 davetang 2021-01-28

goplot shows the gene ontology graph with the enriched GO terms highlighted.

goplot(my_test3)
Warning: ggrepel: 1 unlabeled data points (too many overlaps). Consider
increasing max.overlaps

Version Author Date
22ec290 davetang 2021-01-28

Another nice feature of clusterProfiler is that you can plot multiple gene lists together. We can create another gene list using genes associated with GO:0010975 to demonstrate.

go_to_entrez <- select(org.Hs.eg.db,
                       keys = "GO:0010975",
                       columns = "ENTREZID",
                       keytype = "GO")
'select()' returned 1:many mapping between keys and columns
neuron_proj <- unique(go_to_entrez$ENTREZID)

Perform GO enrichment on two gene lists.

my_gene_list <- list(axon = axon_gene,
                     neuron = neuron_proj)

gene_list_go <- compareCluster(geneCluster = my_gene_list,
                               fun = "enrichGO",
                               universe = universe,
                               OrgDb = org.Hs.eg.db,
                               keyType = "ENTREZID",
                               ont = "BP",
                               pvalueCutoff = 0.001,
                               pAdjustMethod = "BH",
                               qvalueCutoff = 0.1,
                               minGSSize = 10,
                               maxGSSize = 500,
                               readable = FALSE)

head(as.data.frame(gene_list_go))
  Cluster         ID                                 Description GeneRatio
1    axon GO:0007409                                axonogenesis   205/205
2    axon GO:0007411                               axon guidance   205/205
3    axon GO:0097485                  neuron projection guidance   205/205
4    axon GO:0050770                  regulation of axonogenesis    41/205
5    axon GO:0008038                          neuron recognition    27/205
6    axon GO:0010975 regulation of neuron projection development    56/205
    BgRatio       pvalue     p.adjust       qvalue
1 468/18670 0.000000e+00 0.000000e+00 0.000000e+00
2 276/18670 0.000000e+00 0.000000e+00 0.000000e+00
3 277/18670 0.000000e+00 0.000000e+00 0.000000e+00
4 183/18670 2.592496e-42 2.143346e-39 1.300341e-39
5  48/18670 3.898825e-41 2.578683e-38 1.564455e-38
6 499/18670 1.042084e-40 5.743620e-38 3.484583e-38
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           geneID
1 323/474/627/655/682/1002/1400/1436/1600/1630/1796/1808/1826/1855/1942/1943/1944/1945/1946/1947/1948/1949/1969/2041/2042/2043/2044/2045/2046/2047/2048/2049/2050/2051/2115/2131/2297/2534/2549/2625/2637/2668/2674/2675/2676/2736/2737/2817/2885/2886/2887/2909/3730/3798/3800/3897/3908/3913/4009/4089/4147/4628/4684/4756/4902/4914/4917/4983/5015/5080/5290/5291/5293/5295/5335/5458/5578/5588/5594/5595/5598/5623/5649/5747/5781/5786/5800/5818/5909/5979/6091/6092/6259/6324/6387/6405/6464/6469/6477/6585/6586/6654/6708/6709/6710/6711/6712/6714/6900/7080/7143/7204/7408/7430/7436/7473/7474/7852/7869/8013/8399/8609/8633/8660/8828/8829/8851/9046/9048/9211/9252/9260/9353/9355/9369/9378/9499/9637/9638/9846/10048/10371/10381/10500/10505/10512/10678/10752/10818/11023/11127/11313/23022/23032/23114/23191/23767/23768/26999/27020/27255/30011/51332/51466/53358/54538/55715/55740/55816/56896/57408/57453/57549/57556/57731/59277/59352/64096/64221/64855/84665/85358/89780/90249/91624/91653/128434/133418/137970/151449/152330/170302/219699/220164/223117/283297/284217/284656/285220/374946/375790/389549/644168/654429/729920
2 323/474/627/655/682/1002/1400/1436/1600/1630/1796/1808/1826/1855/1942/1943/1944/1945/1946/1947/1948/1949/1969/2041/2042/2043/2044/2045/2046/2047/2048/2049/2050/2051/2115/2131/2297/2534/2549/2625/2637/2668/2674/2675/2676/2736/2737/2817/2885/2886/2887/2909/3730/3798/3800/3897/3908/3913/4009/4089/4147/4628/4684/4756/4902/4914/4917/4983/5015/5080/5290/5291/5293/5295/5335/5458/5578/5588/5594/5595/5598/5623/5649/5747/5781/5786/5800/5818/5909/5979/6091/6092/6259/6324/6387/6405/6464/6469/6477/6585/6586/6654/6708/6709/6710/6711/6712/6714/6900/7080/7143/7204/7408/7430/7436/7473/7474/7852/7869/8013/8399/8609/8633/8660/8828/8829/8851/9046/9048/9211/9252/9260/9353/9355/9369/9378/9499/9637/9638/9846/10048/10371/10381/10500/10505/10512/10678/10752/10818/11023/11127/11313/23022/23032/23114/23191/23767/23768/26999/27020/27255/30011/51332/51466/53358/54538/55715/55740/55816/56896/57408/57453/57549/57556/57731/59277/59352/64096/64221/64855/84665/85358/89780/90249/91624/91653/128434/133418/137970/151449/152330/170302/219699/220164/223117/283297/284217/284656/285220/374946/375790/389549/644168/654429/729920
3 323/474/627/655/682/1002/1400/1436/1600/1630/1796/1808/1826/1855/1942/1943/1944/1945/1946/1947/1948/1949/1969/2041/2042/2043/2044/2045/2046/2047/2048/2049/2050/2051/2115/2131/2297/2534/2549/2625/2637/2668/2674/2675/2676/2736/2737/2817/2885/2886/2887/2909/3730/3798/3800/3897/3908/3913/4009/4089/4147/4628/4684/4756/4902/4914/4917/4983/5015/5080/5290/5291/5293/5295/5335/5458/5578/5588/5594/5595/5598/5623/5649/5747/5781/5786/5800/5818/5909/5979/6091/6092/6259/6324/6387/6405/6464/6469/6477/6585/6586/6654/6708/6709/6710/6711/6712/6714/6900/7080/7143/7204/7408/7430/7436/7473/7474/7852/7869/8013/8399/8609/8633/8660/8828/8829/8851/9046/9048/9211/9252/9260/9353/9355/9369/9378/9499/9637/9638/9846/10048/10371/10381/10500/10505/10512/10678/10752/10818/11023/11127/11313/23022/23032/23114/23191/23767/23768/26999/27020/27255/30011/51332/51466/53358/54538/55715/55740/55816/56896/57408/57453/57549/57556/57731/59277/59352/64096/64221/64855/84665/85358/89780/90249/91624/91653/128434/133418/137970/151449/152330/170302/219699/220164/223117/283297/284217/284656/285220/374946/375790/389549/644168/654429/729920
4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          627/1002/1600/1630/1808/1826/1942/1946/1949/2043/2045/2048/2049/2909/3897/5458/5747/5800/5979/6091/6092/6259/6387/6405/6900/7143/7473/7474/7869/8829/8851/9353/10371/10500/10505/10512/23191/57556/89780/223117/374946
5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           682/1826/1949/2042/2043/2048/2049/2909/6091/6092/6900/7852/8829/8851/10371/23022/27020/27255/54538/57453/57549/64221/84665/91624/128434/133418/152330
6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              627/655/1002/1400/1600/1630/1808/1826/1855/1942/1946/1948/1949/2042/2043/2045/2048/2049/2534/2625/2909/3897/4914/5458/5649/5747/5800/5979/6091/6092/6259/6324/6387/6405/6900/7143/7436/7473/7474/7852/7869/8829/8851/9353/9638/10371/10500/10505/10512/23191/27020/57556/85358/89780/223117/374946
  Count
1   205
2   205
3   205
4    41
5    27
6    56

Dot plot with enriched GO terms by gene list.

dotplot(gene_list_go)

What if my gene list IDs are not Entrez gene IDs?

We can use the biomaRt package for converting between different gene identifiers and in this example, we will convert Ensembl gene IDs to Entrez gene IDs.

if (!"biomaRt" %in% installed.packages()){
  BiocManager::install("biomaRt")
}

library("biomaRt")

We will fetch every Ensembl gene ID and randomly select 10 IDs to convert into Entrez gene IDs.

ensembl <- useMart("ensembl", dataset="hsapiens_gene_ensembl")
 
my_chr <- c(1:22, 'M', 'X', 'Y')
my_ensembl_gene <- getBM(attributes = 'ensembl_gene_id',
                         filters = 'chromosome_name',
                         values = my_chr,
                         mart = ensembl)
 
head(my_ensembl_gene)
  ensembl_gene_id
1 ENSG00000223972
2 ENSG00000227232
3 ENSG00000278267
4 ENSG00000243485
5 ENSG00000284332
6 ENSG00000237613

Select 10 Ensembl gene IDs.

set.seed(1984)
to_convert <- sample(x = my_ensembl_gene$ensembl_gene_id, size = 10, replace = FALSE)

Now to convert the IDs.

to_entrez <- getBM(attributes = c('ensembl_gene_id', 'entrezgene_id'),
                   filters = 'ensembl_gene_id',
                   values = to_convert,
                   mart = ensembl)

to_entrez
   ensembl_gene_id entrezgene_id
1  ENSG00000124568          6568
2  ENSG00000131400          9476
3  ENSG00000212191            NA
4  ENSG00000225315            NA
5  ENSG00000228658            NA
6  ENSG00000256659     101927694
7  ENSG00000257890            NA
8  ENSG00000267552            NA
9  ENSG00000280344            NA
10 ENSG00000281133            NA

Note that not all Ensembl IDs have Entrez IDs. We can find out how many Ensembl IDs do not have Entrez IDs.

my_entrez_gene <- getBM(attributes = c('ensembl_gene_id', 'entrezgene_id'),
                        filters = 'ensembl_gene_id',
                        values = my_ensembl_gene,
                        mart = ensembl)

table(is.na(my_entrez_gene$entrezgene_id))

FALSE  TRUE 
25628 35099 

35099 out of 60727 Ensembl gene IDs do not have corresponding Entrez gene IDs. To learn more about the missing Entrez ID values from the Ensembl conversion see this useful post on BioStars.


sessionInfo()
R version 4.0.3 (2020-10-10)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Big Sur 10.16

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRblas.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib

locale:
[1] en_AU.UTF-8/en_AU.UTF-8/en_AU.UTF-8/C/en_AU.UTF-8/en_AU.UTF-8

attached base packages:
[1] stats4    parallel  stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] biomaRt_2.44.4         org.Hs.eg.db_3.11.4    GO.db_3.11.4          
 [4] GOstats_2.54.0         graph_1.66.0           Category_2.54.0       
 [7] Matrix_1.3-2           AnnotationDbi_1.50.3   IRanges_2.22.2        
[10] S4Vectors_0.26.1       Biobase_2.48.0         BiocGenerics_0.34.0   
[13] clusterProfiler_3.16.1 workflowr_1.6.2       

loaded via a namespace (and not attached):
  [1] fgsea_1.14.0           colorspace_2.0-0       ellipsis_0.3.1        
  [4] ggridges_0.5.3         rprojroot_2.0.2        qvalue_2.20.0         
  [7] fs_1.5.0               rstudioapi_0.13        farver_2.0.3          
 [10] urltools_1.7.3         graphlayouts_0.7.1     ggrepel_0.9.1         
 [13] bit64_4.0.5            scatterpie_0.1.5       xml2_1.3.2            
 [16] splines_4.0.3          cachem_1.0.1           GOSemSim_2.14.2       
 [19] knitr_1.31             polyclip_1.10-0        jsonlite_1.7.2        
 [22] annotate_1.66.0        dbplyr_2.0.0           ggforce_0.3.2         
 [25] BiocManager_1.30.10    compiler_4.0.3         httr_1.4.2            
 [28] rvcheck_0.1.8          assertthat_0.2.1       fastmap_1.1.0         
 [31] later_1.1.0.1          tweenr_1.0.1           htmltools_0.5.1.1     
 [34] prettyunits_1.1.1      tools_4.0.3            igraph_1.2.6          
 [37] gtable_0.3.0           glue_1.4.2             reshape2_1.4.4        
 [40] DO.db_2.9              dplyr_1.0.3            rappdirs_0.3.2        
 [43] fastmatch_1.1-0        Rcpp_1.0.6             enrichplot_1.8.1      
 [46] vctrs_0.3.6            ggraph_2.0.4           xfun_0.20             
 [49] stringr_1.4.0          lifecycle_0.2.0        XML_3.99-0.5          
 [52] DOSE_3.14.0            europepmc_0.4          MASS_7.3-53           
 [55] scales_1.1.1           tidygraph_1.2.0        hms_1.0.0             
 [58] promises_1.1.1         RBGL_1.64.0            RColorBrewer_1.1-2    
 [61] curl_4.3               yaml_2.2.1             memoise_2.0.0         
 [64] gridExtra_2.3          ggplot2_3.3.3          downloader_0.4        
 [67] triebeard_0.3.0        stringi_1.5.3          RSQLite_2.2.3         
 [70] highr_0.8              genefilter_1.70.0      BiocParallel_1.22.0   
 [73] rlang_0.4.10           pkgconfig_2.0.3        bitops_1.0-6          
 [76] evaluate_0.14          lattice_0.20-41        purrr_0.3.4           
 [79] labeling_0.4.2         cowplot_1.1.1          bit_4.0.4             
 [82] tidyselect_1.1.0       AnnotationForge_1.30.1 GSEABase_1.50.1       
 [85] plyr_1.8.6             magrittr_2.0.1         R6_2.5.0              
 [88] generics_0.1.0         DBI_1.1.1              withr_2.4.1           
 [91] pillar_1.4.7           whisker_0.4            survival_3.2-7        
 [94] RCurl_1.98-1.2         tibble_3.0.5           crayon_1.3.4          
 [97] BiocFileCache_1.12.1   rmarkdown_2.6          viridis_0.5.1         
[100] progress_1.2.2         grid_4.0.3             data.table_1.13.6     
[103] Rgraphviz_2.32.0       blob_1.2.1             git2r_0.28.0          
[106] digest_0.6.27          xtable_1.8-4           tidyr_1.1.2           
[109] httpuv_1.5.5           gridGraphics_0.5-1     openssl_1.4.3         
[112] munsell_0.5.0          viridisLite_0.3.0      ggplotify_0.0.5       
[115] askpass_1.1