Last updated: 2026-02-03

Checks: 7 0

Knit directory: muse/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20200712) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 158ac67. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rproj.user/
    Ignored:    data/1M_neurons_filtered_gene_bc_matrices_h5.h5
    Ignored:    data/293t/
    Ignored:    data/293t_3t3_filtered_gene_bc_matrices.tar.gz
    Ignored:    data/293t_filtered_gene_bc_matrices.tar.gz
    Ignored:    data/5k_Human_Donor1_PBMC_3p_gem-x_5k_Human_Donor1_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5
    Ignored:    data/5k_Human_Donor2_PBMC_3p_gem-x_5k_Human_Donor2_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5
    Ignored:    data/5k_Human_Donor3_PBMC_3p_gem-x_5k_Human_Donor3_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5
    Ignored:    data/5k_Human_Donor4_PBMC_3p_gem-x_5k_Human_Donor4_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5
    Ignored:    data/97516b79-8d08-46a6-b329-5d0a25b0be98.h5ad
    Ignored:    data/Parent_SC3v3_Human_Glioblastoma_filtered_feature_bc_matrix.tar.gz
    Ignored:    data/brain_counts/
    Ignored:    data/cl.obo
    Ignored:    data/cl.owl
    Ignored:    data/jurkat/
    Ignored:    data/jurkat:293t_50:50_filtered_gene_bc_matrices.tar.gz
    Ignored:    data/jurkat_293t/
    Ignored:    data/jurkat_filtered_gene_bc_matrices.tar.gz
    Ignored:    data/pbmc20k/
    Ignored:    data/pbmc20k_seurat/
    Ignored:    data/pbmc3k.csv
    Ignored:    data/pbmc3k.csv.gz
    Ignored:    data/pbmc3k.h5ad
    Ignored:    data/pbmc3k/
    Ignored:    data/pbmc3k_bpcells_mat/
    Ignored:    data/pbmc3k_export.mtx
    Ignored:    data/pbmc3k_matrix.mtx
    Ignored:    data/pbmc3k_seurat.rds
    Ignored:    data/pbmc4k_filtered_gene_bc_matrices.tar.gz
    Ignored:    data/pbmc_1k_v3_filtered_feature_bc_matrix.h5
    Ignored:    data/pbmc_1k_v3_raw_feature_bc_matrix.h5
    Ignored:    data/refdata-gex-GRCh38-2020-A.tar.gz
    Ignored:    data/seurat_1m_neuron.rds
    Ignored:    data/t_3k_filtered_gene_bc_matrices.tar.gz
    Ignored:    r_packages_4.4.1/
    Ignored:    r_packages_4.5.0/

Untracked files:
    Untracked:  .claude/
    Untracked:  CLAUDE.md
    Untracked:  analysis/bioc.Rmd
    Untracked:  analysis/bioc_scrnaseq.Rmd
    Untracked:  analysis/chick_weight.Rmd
    Untracked:  analysis/likelihood.Rmd
    Untracked:  bpcells_matrix/
    Untracked:  data/Caenorhabditis_elegans.WBcel235.113.gtf.gz
    Untracked:  data/GCF_043380555.1-RS_2024_12_gene_ontology.gaf.gz
    Untracked:  data/SeuratObj.rds
    Untracked:  data/arab.rds
    Untracked:  data/astronomicalunit.csv
    Untracked:  data/femaleMiceWeights.csv
    Untracked:  data/lung_bcell.rds
    Untracked:  m3/
    Untracked:  women.json

Unstaged changes:
    Modified:   analysis/isoform_switch_analyzer.Rmd
    Modified:   analysis/linear_models.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/edger_pb.Rmd) and HTML (docs/edger_pb.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 158ac67 Dave Tang 2026-02-03 Pseudobulk analysis using edgeR

Data

The single cell RNA-seq data used in this notebook is from the human breast single cell RNA atlas generated by Pal et al. The preprocessing of the data and the complete bioinformatics analyses of the entire atlas study are described in detail in Chen et al. Most of the single cell analysis, such as dimensionality reduction and integration, were performed using Seurat. All the generated Seurat objects are publicly available on Figshare.

The Seurat object used in this notebook was downloaded directly from the website of the edgeR maintainers. This object contains breast tissue micro-environment samples from 13 individual healthy donors. This object has been subsetted to contain 10,000 cells of the total 24,751 cells from the original object.

so <- readRDS("data/SeuratObj.rds")
so
An object of class Seurat 
15527 features across 10000 samples within 2 assays 
Active assay: integrated (2000 features, 2000 variable features)
 1 layer present: data
 1 other assay present: RNA
 2 dimensional reductions calculated: pca, tsne

Distribution of cell counts across 13 healthy donors and 7 clusters; note that some samples don’t have cells belonging to a certain cluster.

table(so@meta.data$group, so@meta.data$seurat_clusters)
                 
                    0   1   2   3   4   5   6
  N_0019_total    346 183 100  36  33  14   9
  N_0021_total     25 214  41   4   2   9   8
  N_0064_total     72  93  41   1   0   1   0
  N_0092_total    207 102  67  18   2  12   0
  N_0093_total    305 433 282   7  11   5  36
  N_0123_total    364 189  63  24   3  18   5
  N_0169_total    739 220 165 151 115   7  19
  N_0230.17_total 657 147 117  12  18  11   6
  N_0233_total    622 148 169  72 127  21  11
  N_0275_total     56 128  57   1   2   1   0
  N_0288_total     58 225 129   1   0   3   0
  N_0342_total    567 692 331  19   9  57  10
  N_0372_total    355 169  72  34  64   3  18

Pseudobulking

Pseudo-bulk samples are created by aggregating read counts together for all the cells with the same combination of human donor and cluster. Here, we generate pseudo-bulk expression profiles from the Seurat object using the Seurat2PB() function. The human donor and cell cluster information of the integrated single cell data is stored in the group and seurat_clusters columns of the meta.data component of the Seurat object.

y <- Seurat2PB(so, sample="group", cluster="seurat_clusters")
dim(y$samples)
[1] 85  5
sum(table(so@meta.data$group, so@meta.data$seurat_clusters) > 0)
[1] 85

Counts are aggregated into samples + clusters; note that there aren’t 13 * 7 samples because as we noted in the table, some combinations have 0 counts.

colnames(y$counts)
 [1] "N_0019_total_cluster0"    "N_0019_total_cluster1"   
 [3] "N_0019_total_cluster2"    "N_0019_total_cluster3"   
 [5] "N_0019_total_cluster4"    "N_0019_total_cluster5"   
 [7] "N_0019_total_cluster6"    "N_0021_total_cluster0"   
 [9] "N_0021_total_cluster1"    "N_0021_total_cluster2"   
[11] "N_0021_total_cluster3"    "N_0021_total_cluster4"   
[13] "N_0021_total_cluster5"    "N_0021_total_cluster6"   
[15] "N_0064_total_cluster0"    "N_0064_total_cluster1"   
[17] "N_0064_total_cluster2"    "N_0064_total_cluster3"   
[19] "N_0064_total_cluster5"    "N_0092_total_cluster0"   
[21] "N_0092_total_cluster1"    "N_0092_total_cluster2"   
[23] "N_0092_total_cluster3"    "N_0092_total_cluster4"   
[25] "N_0092_total_cluster5"    "N_0093_total_cluster0"   
[27] "N_0093_total_cluster1"    "N_0093_total_cluster2"   
[29] "N_0093_total_cluster3"    "N_0093_total_cluster4"   
[31] "N_0093_total_cluster5"    "N_0093_total_cluster6"   
[33] "N_0123_total_cluster0"    "N_0123_total_cluster1"   
[35] "N_0123_total_cluster2"    "N_0123_total_cluster3"   
[37] "N_0123_total_cluster4"    "N_0123_total_cluster5"   
[39] "N_0123_total_cluster6"    "N_0169_total_cluster0"   
[41] "N_0169_total_cluster1"    "N_0169_total_cluster2"   
[43] "N_0169_total_cluster3"    "N_0169_total_cluster4"   
[45] "N_0169_total_cluster5"    "N_0169_total_cluster6"   
[47] "N_0230.17_total_cluster0" "N_0230.17_total_cluster1"
[49] "N_0230.17_total_cluster2" "N_0230.17_total_cluster3"
[51] "N_0230.17_total_cluster4" "N_0230.17_total_cluster5"
[53] "N_0230.17_total_cluster6" "N_0233_total_cluster0"   
[55] "N_0233_total_cluster1"    "N_0233_total_cluster2"   
[57] "N_0233_total_cluster3"    "N_0233_total_cluster4"   
[59] "N_0233_total_cluster5"    "N_0233_total_cluster6"   
[61] "N_0275_total_cluster0"    "N_0275_total_cluster1"   
[63] "N_0275_total_cluster2"    "N_0275_total_cluster3"   
[65] "N_0275_total_cluster4"    "N_0275_total_cluster5"   
[67] "N_0288_total_cluster0"    "N_0288_total_cluster1"   
[69] "N_0288_total_cluster2"    "N_0288_total_cluster3"   
[71] "N_0288_total_cluster5"    "N_0342_total_cluster0"   
[73] "N_0342_total_cluster1"    "N_0342_total_cluster2"   
[75] "N_0342_total_cluster3"    "N_0342_total_cluster4"   
[77] "N_0342_total_cluster5"    "N_0342_total_cluster6"   
[79] "N_0372_total_cluster0"    "N_0372_total_cluster1"   
[81] "N_0372_total_cluster2"    "N_0372_total_cluster3"   
[83] "N_0372_total_cluster4"    "N_0372_total_cluster5"   
[85] "N_0372_total_cluster6"   

Wide range of expression sums and note that the minimum is not 0.

summary(colSums(y$counts))
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
   1352   42181  165537  651543  776854 5011510 

Filtering and normalisation

Filter samples that have less than 50,000 total UMI.

keep.samples <- y$samples$lib.size > 5e4
y <- y[, keep.samples]

dim(y$samples)
[1] 59  5

Filter genes.

keep.genes <- filterByExpr(y, group=y$samples$cluster)
y <- y[keep.genes, , keep=FALSE]

TMM normalisation.

y <- normLibSizes(y)

Design matrix

To perform differential expression analysis between cell clusters, we create a design matrix using both cluster and donor information.

donor <- factor(y$samples$sample)
cluster <- as.factor(y$samples$cluster)
design <- model.matrix(~ cluster + donor)
colnames(design) <- gsub("donor", "", colnames(design))
colnames(design)[1] <- "Int"
dim(design)
[1] 59 19

There are 19 columns because 1 + 6 (clusters) + 12 (samples) = 19; the first sample + first cluster is the intercept. Each column represents one model parameter to be estimated.

There are 59 rows because each row represents a single sample + cluster combination.

head(design)
  Int cluster1 cluster2 cluster3 cluster4 cluster5 cluster6 N_0021_total
1   1        0        0        0        0        0        0            0
2   1        1        0        0        0        0        0            0
3   1        0        1        0        0        0        0            0
4   1        0        0        1        0        0        0            0
5   1        0        0        0        0        1        0            0
6   1        0        0        0        0        0        1            0
  N_0064_total N_0092_total N_0093_total N_0123_total N_0169_total
1            0            0            0            0            0
2            0            0            0            0            0
3            0            0            0            0            0
4            0            0            0            0            0
5            0            0            0            0            0
6            0            0            0            0            0
  N_0230.17_total N_0233_total N_0275_total N_0288_total N_0342_total
1               0            0            0            0            0
2               0            0            0            0            0
3               0            0            0            0            0
4               0            0            0            0            0
5               0            0            0            0            0
6               0            0            0            0            0
  N_0372_total
1            0
2            0
3            0
4            0
5            0
6            0

The first row (cluster0 and N_0019_total) shows Int=1 and everything else as 0; this is the baseline/reference.

Next we will estimate the dispersion and fit a model using the design matrix structure.

y <- estimateDisp(y, design, robust=TRUE)
fit <- glmQLFit(y, design, robust=TRUE)

To confirm the identities of cell clusters, we perform differential expression analysis to identify marker genes of each cluster. In particular, we compare each cluster with all the other clusters. Since there are 7 clusters in total, we construct a contrast matrix as follows so that each column of the contrast matrix represents a testing contrast for one cell cluster. Each contrast is a different linear combination of the same coefficients.

Each column of the contrast matrix represents one comparison: testing whether a specific cluster is different from the average of all other clusters.

The contrast is only testing cluster effects. The donor effects are being controlled for and they are not part of the comparison; all the donor rows are 0 meaning that we are not adding or subtracting donor effects in this contrast.

ncls <- nlevels(cluster)
contr <- rbind( matrix(1/(1-ncls), ncls, ncls),
matrix(0, ncol(design)-ncls, ncls) )
diag(contr) <- 1
contr[1,] <- 0
rownames(contr) <- colnames(design)
colnames(contr) <- paste0("cluster", levels(cluster))
contr
                  cluster0   cluster1   cluster2   cluster3   cluster4
Int              0.0000000  0.0000000  0.0000000  0.0000000  0.0000000
cluster1        -0.1666667  1.0000000 -0.1666667 -0.1666667 -0.1666667
cluster2        -0.1666667 -0.1666667  1.0000000 -0.1666667 -0.1666667
cluster3        -0.1666667 -0.1666667 -0.1666667  1.0000000 -0.1666667
cluster4        -0.1666667 -0.1666667 -0.1666667 -0.1666667  1.0000000
cluster5        -0.1666667 -0.1666667 -0.1666667 -0.1666667 -0.1666667
cluster6        -0.1666667 -0.1666667 -0.1666667 -0.1666667 -0.1666667
N_0021_total     0.0000000  0.0000000  0.0000000  0.0000000  0.0000000
N_0064_total     0.0000000  0.0000000  0.0000000  0.0000000  0.0000000
N_0092_total     0.0000000  0.0000000  0.0000000  0.0000000  0.0000000
N_0093_total     0.0000000  0.0000000  0.0000000  0.0000000  0.0000000
N_0123_total     0.0000000  0.0000000  0.0000000  0.0000000  0.0000000
N_0169_total     0.0000000  0.0000000  0.0000000  0.0000000  0.0000000
N_0230.17_total  0.0000000  0.0000000  0.0000000  0.0000000  0.0000000
N_0233_total     0.0000000  0.0000000  0.0000000  0.0000000  0.0000000
N_0275_total     0.0000000  0.0000000  0.0000000  0.0000000  0.0000000
N_0288_total     0.0000000  0.0000000  0.0000000  0.0000000  0.0000000
N_0342_total     0.0000000  0.0000000  0.0000000  0.0000000  0.0000000
N_0372_total     0.0000000  0.0000000  0.0000000  0.0000000  0.0000000
                  cluster5   cluster6
Int              0.0000000  0.0000000
cluster1        -0.1666667 -0.1666667
cluster2        -0.1666667 -0.1666667
cluster3        -0.1666667 -0.1666667
cluster4        -0.1666667 -0.1666667
cluster5         1.0000000 -0.1666667
cluster6        -0.1666667  1.0000000
N_0021_total     0.0000000  0.0000000
N_0064_total     0.0000000  0.0000000
N_0092_total     0.0000000  0.0000000
N_0093_total     0.0000000  0.0000000
N_0123_total     0.0000000  0.0000000
N_0169_total     0.0000000  0.0000000
N_0230.17_total  0.0000000  0.0000000
N_0233_total     0.0000000  0.0000000
N_0275_total     0.0000000  0.0000000
N_0288_total     0.0000000  0.0000000
N_0342_total     0.0000000  0.0000000
N_0372_total     0.0000000  0.0000000

We then perform quasi-likelihood F-test for each testing contrast. The results are stored as a list of DGELRT objects, one for each comparison.

qlf <- list()
for(i in 1:ncls){
  qlf[[i]] <- glmQLFTest(fit, contrast=contr[,i])
  qlf[[i]]$comparison <- paste0("cluster", levels(cluster)[i], "_vs_others")
}

length(qlf)
[1] 7

The top most significant DE genes of cluster 0 vs other clusters can be examined with topTags.

topTags(qlf[[1]], n=10L)
Coefficient:  cluster0_vs_others 
             gene    logFC   logCPM        F       PValue          FDR
FBLN1       FBLN1 5.983506 6.782442 759.4003 2.316922e-39 1.822722e-35
OGN           OGN 5.726554 5.839392 607.2557 1.674505e-36 6.586667e-33
IGFBP6     IGFBP6 5.374590 6.786631 558.2772 9.989689e-35 2.619630e-31
DPT           DPT 5.893382 6.312554 472.2406 7.413967e-34 1.458142e-30
CFD           CFD 4.978584 8.900624 552.3340 8.403495e-33 1.322206e-29
SERPINF1 SERPINF1 5.169235 6.919634 595.2697 1.350858e-32 1.771200e-29
MFAP4       MFAP4 4.611371 5.947151 451.5254 1.779196e-32 1.999562e-29
CRABP2     CRABP2 3.948766 6.351154 449.3824 2.162987e-32 2.127027e-29
CLMP         CLMP 5.951695 7.510977 502.3276 4.276494e-32 3.393508e-29
MMP2         MMP2 5.377426 6.789111 475.9323 4.313598e-32 3.393508e-29

The numbers of DE genes under each comparison are shown below

dt <- lapply(lapply(qlf, decideTests), summary)
dt.all <- do.call("cbind", dt)
dt.all
       cluster0_vs_others cluster1_vs_others cluster2_vs_others
Down                 1478                790               1453
NotSig               3980               4852               4276
Up                   2409               2225               2138
       cluster3_vs_others cluster4_vs_others cluster5_vs_others
Down                 1588               1605                249
NotSig               4408               4942               6573
Up                   1871               1320               1045
       cluster6_vs_others
Down                 1410
NotSig               4880
Up                   1577
top <- 20
topMarkers <- list()
for(i in 1:ncls) {
  ord <- order(qlf[[i]]$table$PValue, decreasing=FALSE)
  up <- qlf[[i]]$table$logFC[ord] > 0
  topMarkers[[i]] <- rownames(y)[ord[up][1:top]]
}
topMarkers <- unique(unlist(topMarkers))
topMarkers
  [1] "FBLN1"    "OGN"      "IGFBP6"   "DPT"      "CFD"      "SERPINF1"
  [7] "MFAP4"    "CRABP2"   "CLMP"     "MMP2"     "SFRP2"    "LUM"     
 [13] "GPC3"     "PTGDS"    "C1S"      "GFPT2"    "LRP1"     "MEG8"    
 [19] "PCOLCE"   "CCDC80"   "PLVAP"    "RBP7"     "INHBB"    "FLT1"    
 [25] "PECAM1"   "SOX17"    "EMCN"     "S1PR1"    "IFI27"    "PCAT19"  
 [31] "RAPGEF4"  "SELE"     "ADGRL4"   "ESAM"     "MYCT1"    "CDH5"    
 [37] "SPARCL1"  "ADAMTS9"  "CALCRL"   "AQP1"     "MYL9"     "TPM2"    
 [43] "CRISPLD2" "ADAMTS4"  "ACTA2"    "TAGLN"    "MT1A"     "KCNE4"   
 [49] "ADIRF"    "CALD1"    "ADAMTS1"  "CRYAB"    "GJA4"     "MCAM"    
 [55] "CPE"      "PLN"      "AXL"      "NDUFA4L2" "STEAP4"   "EFHD1"   
 [61] "HLA-DQB1" "HLA-DPA1" "ACSL1"    "CD68"     "C5AR1"    "HLA-DPB1"
 [67] "LAPTM5"   "HLA-DRB1" "CXCL16"   "IL4I1"    "CD74"     "KYNU"    
 [73] "C15orf48" "HLA-DQA1" "FCER1G"   "C1QB"     "SAMSN1"   "MPP1"    
 [79] "SLC16A10" "TLR2"     "KLRD1"    "PIK3IP1"  "LEPROTL1" "CCL5"    
 [85] "CLEC2D"   "CD7"      "IL7R"     "PARP8"    "KIAA1551" "PTPRC"   
 [91] "AKNA"     "SARAF"    "CRYBG1"   "CXCR4"    "RUNX3"    "PPP2R5C" 
 [97] "SMAP2"    "FYN"      "CHST12"   "CNOT6L"   "KRT17"    "KRT14"   
[103] "KRT5"     "SFN"      "S100A2"   "DST"      "KRT6B"    "LAMA3"   
[109] "ACTG2"    "S100A14"  "LIMA1"    "KRT7"     "FHL2"     "TPM1"    
[115] "DMKN"     "GDF15"    "CD200"    "HEY1"     "CNKSR3"   "PPFIBP1" 
[121] "SCN3B"    "GATA2"    "CLDN5"    "C2CD4B"   "TFF3"     "ANGPT2"  
[127] "TSPAN12"  "PRRG4"    "BBC3"     "RASGRP3"  "ARL4A"    "RAB32"   
[133] "C6orf141" "RAI14"    "PDPN"    
lcpm <- edgeR::cpm(y, log=TRUE)
annot <- data.frame(cluster=paste0("cluster ", cluster))
rownames(annot) <- colnames(y)
ann_colors <- list(cluster=2:8)
names(ann_colors$cluster) <- paste0("cluster ", levels(cluster))
pheatmap::pheatmap(lcpm[topMarkers, ], breaks=seq(-2,2,length.out=101),
                   color=colorRampPalette(c("blue","white","red"))(100), scale="row",
                   cluster_cols=TRUE, border_color="NA", fontsize_row=5,
                   treeheight_row=70, treeheight_col=70, cutree_cols=7,
                   clustering_method="ward.D2", show_colnames=FALSE,
                   annotation_col=annot, annotation_colors=ann_colors)

Session info

sessionInfo()
R version 4.5.0 (2025-04-11)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 24.04.3 LTS

Matrix products: default
BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 
LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.26.so;  LAPACK version 3.12.0

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

time zone: Etc/UTC
tzcode source: system (glibc)

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] pheatmap_1.0.13    Seurat_5.3.0       SeuratObject_5.1.0 sp_2.2-0          
 [5] edgeR_4.6.3        limma_3.64.3       lubridate_1.9.4    forcats_1.0.0     
 [9] stringr_1.5.1      dplyr_1.1.4        purrr_1.0.4        readr_2.1.5       
[13] tidyr_1.3.1        tibble_3.3.0       ggplot2_3.5.2      tidyverse_2.0.0   
[17] workflowr_1.7.1   

loaded via a namespace (and not attached):
  [1] RColorBrewer_1.1-3     rstudioapi_0.17.1      jsonlite_2.0.0        
  [4] magrittr_2.0.3         spatstat.utils_3.1-5   farver_2.1.2          
  [7] rmarkdown_2.29         fs_1.6.6               vctrs_0.6.5           
 [10] ROCR_1.0-11            spatstat.explore_3.5-2 htmltools_0.5.8.1     
 [13] sass_0.4.10            sctransform_0.4.2      parallelly_1.45.0     
 [16] KernSmooth_2.23-26     bslib_0.9.0            htmlwidgets_1.6.4     
 [19] ica_1.0-3              plyr_1.8.9             plotly_4.11.0         
 [22] zoo_1.8-14             cachem_1.1.0           whisker_0.4.1         
 [25] igraph_2.1.4           mime_0.13              lifecycle_1.0.4       
 [28] pkgconfig_2.0.3        Matrix_1.7-3           R6_2.6.1              
 [31] fastmap_1.2.0          fitdistrplus_1.2-4     future_1.58.0         
 [34] shiny_1.11.1           digest_0.6.37          colorspace_2.1-1      
 [37] patchwork_1.3.0        ps_1.9.1               rprojroot_2.0.4       
 [40] tensor_1.5.1           RSpectra_0.16-2        irlba_2.3.5.1         
 [43] progressr_0.15.1       spatstat.sparse_3.1-0  timechange_0.3.0      
 [46] httr_1.4.7             polyclip_1.10-7        abind_1.4-8           
 [49] compiler_4.5.0         withr_3.0.2            fastDummies_1.7.5     
 [52] MASS_7.3-65            tools_4.5.0            lmtest_0.9-40         
 [55] httpuv_1.6.16          future.apply_1.20.0    goftest_1.2-3         
 [58] glue_1.8.0             callr_3.7.6            nlme_3.1-168          
 [61] promises_1.3.3         grid_4.5.0             Rtsne_0.17            
 [64] getPass_0.2-4          cluster_2.1.8.1        reshape2_1.4.4        
 [67] generics_0.1.4         gtable_0.3.6           spatstat.data_3.1-6   
 [70] tzdb_0.5.0             data.table_1.17.4      hms_1.1.3             
 [73] spatstat.geom_3.5-0    RcppAnnoy_0.0.22       ggrepel_0.9.6         
 [76] RANN_2.6.2             pillar_1.10.2          spam_2.11-1           
 [79] RcppHNSW_0.6.0         later_1.4.2            splines_4.5.0         
 [82] lattice_0.22-6         deldir_2.0-4           survival_3.8-3        
 [85] tidyselect_1.2.1       locfit_1.5-9.12        miniUI_0.1.2          
 [88] pbapply_1.7-4          knitr_1.50             git2r_0.36.2          
 [91] gridExtra_2.3          scattermore_1.2        xfun_0.52             
 [94] statmod_1.5.0          matrixStats_1.5.0      stringi_1.8.7         
 [97] lazyeval_0.2.2         yaml_2.3.10            evaluate_1.0.3        
[100] codetools_0.2-20       cli_3.6.5              uwot_0.2.3            
[103] xtable_1.8-4           reticulate_1.43.0      processx_3.8.6        
[106] jquerylib_0.1.4        Rcpp_1.0.14            spatstat.random_3.4-1 
[109] globals_0.18.0         png_0.1-8              spatstat.univar_3.1-4 
[112] parallel_4.5.0         dotCall64_1.2          listenv_0.9.1         
[115] viridisLite_0.4.2      scales_1.4.0           ggridges_0.5.6        
[118] rlang_1.1.6            cowplot_1.2.0         

Time taken to render notebook.

end_time <- Sys.time()
end_time - start_time
Time difference of 31.12612 secs

sessionInfo()
R version 4.5.0 (2025-04-11)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 24.04.3 LTS

Matrix products: default
BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 
LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.26.so;  LAPACK version 3.12.0

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

time zone: Etc/UTC
tzcode source: system (glibc)

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] pheatmap_1.0.13    Seurat_5.3.0       SeuratObject_5.1.0 sp_2.2-0          
 [5] edgeR_4.6.3        limma_3.64.3       lubridate_1.9.4    forcats_1.0.0     
 [9] stringr_1.5.1      dplyr_1.1.4        purrr_1.0.4        readr_2.1.5       
[13] tidyr_1.3.1        tibble_3.3.0       ggplot2_3.5.2      tidyverse_2.0.0   
[17] workflowr_1.7.1   

loaded via a namespace (and not attached):
  [1] RColorBrewer_1.1-3     rstudioapi_0.17.1      jsonlite_2.0.0        
  [4] magrittr_2.0.3         spatstat.utils_3.1-5   farver_2.1.2          
  [7] rmarkdown_2.29         fs_1.6.6               vctrs_0.6.5           
 [10] ROCR_1.0-11            spatstat.explore_3.5-2 htmltools_0.5.8.1     
 [13] sass_0.4.10            sctransform_0.4.2      parallelly_1.45.0     
 [16] KernSmooth_2.23-26     bslib_0.9.0            htmlwidgets_1.6.4     
 [19] ica_1.0-3              plyr_1.8.9             plotly_4.11.0         
 [22] zoo_1.8-14             cachem_1.1.0           whisker_0.4.1         
 [25] igraph_2.1.4           mime_0.13              lifecycle_1.0.4       
 [28] pkgconfig_2.0.3        Matrix_1.7-3           R6_2.6.1              
 [31] fastmap_1.2.0          fitdistrplus_1.2-4     future_1.58.0         
 [34] shiny_1.11.1           digest_0.6.37          colorspace_2.1-1      
 [37] patchwork_1.3.0        ps_1.9.1               rprojroot_2.0.4       
 [40] tensor_1.5.1           RSpectra_0.16-2        irlba_2.3.5.1         
 [43] progressr_0.15.1       spatstat.sparse_3.1-0  timechange_0.3.0      
 [46] httr_1.4.7             polyclip_1.10-7        abind_1.4-8           
 [49] compiler_4.5.0         withr_3.0.2            fastDummies_1.7.5     
 [52] MASS_7.3-65            tools_4.5.0            lmtest_0.9-40         
 [55] httpuv_1.6.16          future.apply_1.20.0    goftest_1.2-3         
 [58] glue_1.8.0             callr_3.7.6            nlme_3.1-168          
 [61] promises_1.3.3         grid_4.5.0             Rtsne_0.17            
 [64] getPass_0.2-4          cluster_2.1.8.1        reshape2_1.4.4        
 [67] generics_0.1.4         gtable_0.3.6           spatstat.data_3.1-6   
 [70] tzdb_0.5.0             data.table_1.17.4      hms_1.1.3             
 [73] spatstat.geom_3.5-0    RcppAnnoy_0.0.22       ggrepel_0.9.6         
 [76] RANN_2.6.2             pillar_1.10.2          spam_2.11-1           
 [79] RcppHNSW_0.6.0         later_1.4.2            splines_4.5.0         
 [82] lattice_0.22-6         deldir_2.0-4           survival_3.8-3        
 [85] tidyselect_1.2.1       locfit_1.5-9.12        miniUI_0.1.2          
 [88] pbapply_1.7-4          knitr_1.50             git2r_0.36.2          
 [91] gridExtra_2.3          scattermore_1.2        xfun_0.52             
 [94] statmod_1.5.0          matrixStats_1.5.0      stringi_1.8.7         
 [97] lazyeval_0.2.2         yaml_2.3.10            evaluate_1.0.3        
[100] codetools_0.2-20       cli_3.6.5              uwot_0.2.3            
[103] xtable_1.8-4           reticulate_1.43.0      processx_3.8.6        
[106] jquerylib_0.1.4        Rcpp_1.0.14            spatstat.random_3.4-1 
[109] globals_0.18.0         png_0.1-8              spatstat.univar_3.1-4 
[112] parallel_4.5.0         dotCall64_1.2          listenv_0.9.1         
[115] viridisLite_0.4.2      scales_1.4.0           ggridges_0.5.6        
[118] rlang_1.1.6            cowplot_1.2.0