Last updated: 2022-09-01

Checks: 7 0

Knit directory: muse/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20200712) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version c8588b7. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    r_packages_4.1.2/
    Ignored:    r_packages_4.2.0/

Untracked files:
    Untracked:  analysis/cell_ranger.Rmd
    Untracked:  data/ncrna_NONCODE[v3.0].fasta.tar.gz
    Untracked:  data/ncrna_noncode_v3.fa

Unstaged changes:
    Modified:   script/run_rstudio.sh

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/split_column.Rmd) and HTML (docs/split_column.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd c8588b7 Dave Tang 2022-09-01 Split GTF group column
html d6644d2 Dave Tang 2021-06-22 Build site.
Rmd 8ae8e21 Dave Tang 2021-06-22 Post on splitting a single column of annotations

Introduction

Two widely used file formats in bioinformatics, VCF and GTF, have single columns that are packed with annotation information. This makes them a bit inconvenient to work with in R when using data frames because the values need to be unpacked, i.e. split. In addition, this violates one of the conditions for tidy data, which is that every cell is a single value. In this post, we will use tools from the tidyverse to split the values into multiple columns to make the data easier to work with in R.

To get started, install the tidyverse if you haven’t already.

if(!require("tidyverse")){
  install.packages("tidyverse")
}
library(tidyverse)

I have a small package called importbio that can be used to load a VCF and GTF file. You can install it using the remotes package.

if(!require("remotes")){
  install.packages("remotes")
}

if(!require("importbio")){
  remotes::install_github('davetang/importbio')
}

Splitting the info column in a VCF file

We will load a small VCF file using importvcf.

library(importbio)
my_vcf <- importvcf("https://raw.githubusercontent.com/davetang/learning_vcf_file/master/eg/Pfeiffer.vcf")

my_vcf %>%
  select(info) %>%
  head()
# A tibble: 6 × 1
  info                                                                          
  <chr>                                                                         
1 AC=2;AF=1.00;AN=2;DB;DP=11;FS=0.000;HRun=0;HaplotypeScore=41.3338;MQ0=0;MQ=61…
2 AC=1;AF=0.50;AN=2;BaseQRankSum=1.455;DB;DP=21;Dels=0.00;FS=1.984;HRun=0;Haplo…
3 AC=1;AF=0.50;AN=2;BaseQRankSum=1.934;DP=48;Dels=0.00;FS=4.452;HRun=0;Haplotyp…
4 AC=1;AF=0.50;AN=2;BaseQRankSum=-4.517;DB;DP=29;Dels=0.00;FS=1.485;HRun=0;Hapl…
5 AC=1;AF=0.50;AN=2;BaseQRankSum=0.199;DB;DP=33;Dels=0.00;FS=0.000;HRun=1;Haplo…
6 AC=1;AF=0.50;AN=2;BaseQRankSum=-0.259;DB;DP=12;Dels=0.00;FS=0.000;HRun=1;Hapl…

Note that the info column is packed with all sorts of information for each variant. Also note the consistent format of the info column: each annotation is separated by a semi-colon (;) and annotations are stored as key-value pairs with an equal sign in between.

Firstly, we will use separate_rows to create a new row for each annotation by using ; as the separator/delimiter; note that I have included \\s* after ;, which is a regex for specifying a single whitespace occurring 0 or more times. By including the regex, whitespace after ; will be removed, which is good because we do not want whitespace in our data. In addition, a mutate call is used prior to calling separate_rows and it is used to remove a trailing semicolon, if it exists.

my_vcf %>%
  mutate(info = sub(pattern = ";$", replacement = "", x = .data$info)) %>%
  separate_rows(info, sep = ";\\s*") %>%
  head()
# A tibble: 6 × 10
  vid              chrom    pos id         ref   alt   qual   filter info  type 
  <chr>            <fct>  <int> <chr>      <chr> <chr> <chr>  <chr>  <chr> <chr>
1 1_866511_C_CCCCT 1     866511 rs60722469 C     CCCCT 258.62 PASS   AC=2  ins  
2 1_866511_C_CCCCT 1     866511 rs60722469 C     CCCCT 258.62 PASS   AF=1… ins  
3 1_866511_C_CCCCT 1     866511 rs60722469 C     CCCCT 258.62 PASS   AN=2  ins  
4 1_866511_C_CCCCT 1     866511 rs60722469 C     CCCCT 258.62 PASS   DB    ins  
5 1_866511_C_CCCCT 1     866511 rs60722469 C     CCCCT 258.62 PASS   DP=11 ins  
6 1_866511_C_CCCCT 1     866511 rs60722469 C     CCCCT 258.62 PASS   FS=0… ins  

The next step is to split the key-value pairs and we will use the separate function to separate the pairs into two columns, which we will name key and value, using the equal sign as the separator/delimiter. Sometimes a key is missing a value and in these cases, the value will be NA.

my_vcf %>%
  mutate(info = sub(pattern = ";$", replacement = "", x = .data$info)) %>%
  separate_rows(info, sep = ";\\s*") %>%
  separate(info, c('key', 'value'), sep = "=") %>%
  head(10)
# A tibble: 10 × 11
   vid             chrom    pos id    ref   alt   qual  filter key   value type 
   <chr>           <fct>  <int> <chr> <chr> <chr> <chr> <chr>  <chr> <chr> <chr>
 1 1_866511_C_CCC… 1     866511 rs60… C     CCCCT 258.… PASS   AC    2     ins  
 2 1_866511_C_CCC… 1     866511 rs60… C     CCCCT 258.… PASS   AF    1.00  ins  
 3 1_866511_C_CCC… 1     866511 rs60… C     CCCCT 258.… PASS   AN    2     ins  
 4 1_866511_C_CCC… 1     866511 rs60… C     CCCCT 258.… PASS   DB    <NA>  ins  
 5 1_866511_C_CCC… 1     866511 rs60… C     CCCCT 258.… PASS   DP    11    ins  
 6 1_866511_C_CCC… 1     866511 rs60… C     CCCCT 258.… PASS   FS    0.000 ins  
 7 1_866511_C_CCC… 1     866511 rs60… C     CCCCT 258.… PASS   HRun  0     ins  
 8 1_866511_C_CCC… 1     866511 rs60… C     CCCCT 258.… PASS   Hapl… 41.3… ins  
 9 1_866511_C_CCC… 1     866511 rs60… C     CCCCT 258.… PASS   MQ0   0     ins  
10 1_866511_C_CCC… 1     866511 rs60… C     CCCCT 258.… PASS   MQ    61.94 ins  

The current state of the transformation produces a new row for each variant annotation and two columns containing the key and value. If we want our data in wide format where each annotation is a column, we can use the pivot_wider function.

In the code below, I have used the first eight columns (id_cols = vid:filter) to specify the columns that uniquely identifies each variant, i.e. the same variant will have the same values in these columns. We specify our column names from the key column and the values for these cells will come from the value column.

my_vcf %>%
  mutate(info = sub(pattern = ";$", replacement = "", x = .data$info)) %>%
  separate_rows(info, sep = ";\\s*") %>%
  separate(info, c('key', 'value'), sep = "=") %>%
  distinct() %>% # remove duplicated annotations, if any
  pivot_wider(id_cols = vid:filter, names_from = key, values_from = value) %>%
  head(10)
# A tibble: 10 × 28
   vid       chrom    pos id    ref   alt   qual  filter AC    AF    AN    DB   
   <chr>     <fct>  <int> <chr> <chr> <chr> <chr> <chr>  <chr> <chr> <chr> <chr>
 1 1_866511… 1     866511 rs60… C     CCCCT 258.… PASS   2     1.00  2     <NA> 
 2 1_879317… 1     879317 rs75… C     T     150.… PASS   1     0.50  2     <NA> 
 3 1_879482… 1     879482 .     G     C     484.… PASS   1     0.50  2     <NA> 
 4 1_880390… 1     880390 rs37… C     A     288.… PASS   1     0.50  2     <NA> 
 5 1_881627… 1     881627 rs22… G     A     486.… PASS   1     0.50  2     <NA> 
 6 1_884091… 1     884091 rs75… C     G     65.46 PASS   1     0.50  2     <NA> 
 7 1_884101… 1     884101 rs49… A     C     85.81 PASS   1     0.50  2     <NA> 
 8 1_892460… 1     892460 rs41… G     C     1736… PASS   1     0.50  2     <NA> 
 9 1_897730… 1     897730 rs75… C     T     225.… PASS   1     0.50  2     <NA> 
10 1_909238… 1     909238 rs38… G     C     247.… PASS   1     0.50  2     <NA> 
# … with 16 more variables: DP <chr>, FS <chr>, HRun <chr>,
#   HaplotypeScore <chr>, MQ0 <chr>, MQ <chr>, QD <chr>, set <chr>,
#   BaseQRankSum <chr>, Dels <chr>, MQRankSum <chr>, ReadPosRankSum <chr>,
#   DS <chr>, GENE <chr>, INHERITANCE <chr>, MIM <chr>

Now each row is a single variant and each column is a variable.

Splitting the group column in a GTF file

The GTF also has a column packed with key-value pairs.

my_gtf <- read_tsv(
  file = "https://github.com/davetang/importbio/raw/master/inst/extdata/gencode.v38.annotation.sample.gtf.gz",
  comment = "#",
  show_col_types = FALSE,
  col_names = c('chr', 'src', 'feat', 'start', 'end', 'score', 'strand', 'frame', 'group'))

my_gtf %>%
  select(group) %>%
  head()
# A tibble: 6 × 1
  group                                                                         
  <chr>                                                                         
1 "gene_id \"ENSG00000223972.5\"; gene_type \"transcribed_unprocessed_pseudogen…
2 "gene_id \"ENSG00000223972.5\"; transcript_id \"ENST00000456328.2\"; gene_typ…
3 "gene_id \"ENSG00000223972.5\"; transcript_id \"ENST00000456328.2\"; gene_typ…
4 "gene_id \"ENSG00000223972.5\"; transcript_id \"ENST00000456328.2\"; gene_typ…
5 "gene_id \"ENSG00000223972.5\"; transcript_id \"ENST00000456328.2\"; gene_typ…
6 "gene_id \"ENSG00000223972.5\"; transcript_id \"ENST00000450305.2\"; gene_typ…

We can use the same strategy (but with some additional formatting steps) to split the column up.

my_gtf %>%
  mutate(group = sub(pattern = ";$", replacement = "", x = .data$group)) %>%
  mutate(group = gsub(pattern = '"', replacement = "", x = .data$group)) %>%
  separate_rows(group, sep = ";\\s*") %>%
  separate(group, c('key', 'value'), sep = "\\s") %>%
  distinct() %>% # remove duplicated annotations, if any
  pivot_wider(id_cols = chr:frame, names_from = key, values_from = value) -> my_gtf_split
Warning: Values from `value` are not uniquely identified; output will contain list-cols.
* Use `values_fn = list` to suppress this warning.
* Use `values_fn = {summary_fun}` to summarise duplicates.
* Use the following dplyr code to identify duplicates.
  {data} %>%
    dplyr::group_by(chr, src, feat, start, end, score, strand, frame, key) %>%
    dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
    dplyr::filter(n > 1L)
head(my_gtf_split, 10)
# A tibble: 10 × 24
   chr   src    feat      start   end score strand frame gene_id gene_…¹ gene_…²
   <chr> <chr>  <chr>     <dbl> <dbl> <chr> <chr>  <chr> <list>  <list>  <list> 
 1 chr1  HAVANA gene      11869 14409 .     +      .     <chr>   <chr>   <chr>  
 2 chr1  HAVANA transcri… 11869 14409 .     +      .     <chr>   <chr>   <chr>  
 3 chr1  HAVANA exon      11869 12227 .     +      .     <chr>   <chr>   <chr>  
 4 chr1  HAVANA exon      12613 12721 .     +      .     <chr>   <chr>   <chr>  
 5 chr1  HAVANA exon      13221 14409 .     +      .     <chr>   <chr>   <chr>  
 6 chr1  HAVANA transcri… 12010 13670 .     +      .     <chr>   <chr>   <chr>  
 7 chr1  HAVANA exon      12010 12057 .     +      .     <chr>   <chr>   <chr>  
 8 chr1  HAVANA exon      12179 12227 .     +      .     <chr>   <chr>   <chr>  
 9 chr1  HAVANA exon      12613 12697 .     +      .     <chr>   <chr>   <chr>  
10 chr1  HAVANA exon      12975 13052 .     +      .     <chr>   <chr>   <chr>  
# … with 13 more variables: level <list>, hgnc_id <list>, havana_gene <list>,
#   transcript_id <list>, transcript_type <list>, transcript_name <list>,
#   transcript_support_level <list>, tag <list>, havana_transcript <list>,
#   exon_number <list>, exon_id <list>, ont <list>, protein_id <list>, and
#   abbreviated variable names ¹​gene_type, ²​gene_name

However, the split columns are lists because there were some cases where there were multiple annotations with the same key and a list is needed to store multiple values (which was what the warning above was about). For example the tag key was repeated more than once with different unique values for some annotations.

map_lgl(my_gtf_split$tag, function(x) length(x) > 1)
 [1] FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
[13] FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
[25]  TRUE FALSE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
[37] FALSE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE
[49]  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE
[61]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE
[73]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE
[85] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE

We can check which columns have multiple values.

check_column <- function(x){
  any(map_lgl(x, function(y) length(y) > 1))
}

my_check <- map_lgl(my_gtf_split, check_column)
my_check[my_check]
    transcript_id   transcript_name               tag havana_transcript 
             TRUE              TRUE              TRUE              TRUE 
      exon_number               ont 
             TRUE              TRUE 

Therefore despite only a subset of the columns containing multiple values, all the pivoted columns were turned into lists. However we can turn the columns back into characters, which makes sense for the gene_id column which only contained single unique character values in the first place.

my_gtf_split %>%
  mutate(gene_id = as.character(gene_id)) %>%
  head()
# A tibble: 6 × 24
  chr   src   feat  start   end score strand frame gene_id gene_…¹ gene_…² level
  <chr> <chr> <chr> <dbl> <dbl> <chr> <chr>  <chr> <chr>   <list>  <list>  <lis>
1 chr1  HAVA… gene  11869 14409 .     +      .     ENSG00… <chr>   <chr>   <chr>
2 chr1  HAVA… tran… 11869 14409 .     +      .     ENSG00… <chr>   <chr>   <chr>
3 chr1  HAVA… exon  11869 12227 .     +      .     ENSG00… <chr>   <chr>   <chr>
4 chr1  HAVA… exon  12613 12721 .     +      .     ENSG00… <chr>   <chr>   <chr>
5 chr1  HAVA… exon  13221 14409 .     +      .     ENSG00… <chr>   <chr>   <chr>
6 chr1  HAVA… tran… 12010 13670 .     +      .     ENSG00… <chr>   <chr>   <chr>
# … with 12 more variables: hgnc_id <list>, havana_gene <list>,
#   transcript_id <list>, transcript_type <list>, transcript_name <list>,
#   transcript_support_level <list>, tag <list>, havana_transcript <list>,
#   exon_number <list>, exon_id <list>, ont <list>, protein_id <list>, and
#   abbreviated variable names ¹​gene_type, ²​gene_name

But we can also do this to the tag column (even if it needed a list to store the multiple values) and entries with multiple values get turned into R (character) code!

my_gtf_split %>%
  mutate(tag = as.character(tag)) %>%
  select(tag) %>%
  head()
# A tibble: 6 × 1
  tag                                  
  <chr>                                
1 "NULL"                               
2 "basic"                              
3 "basic"                              
4 "basic"                              
5 "basic"                              
6 "c(\"basic\", \"Ensembl_canonical\")"

If you don’t mind having R (character) code in your data, you can perform this transformation across all pivoted columns.

my_gtf_split %>%
  mutate(across(gene_id:protein_id, as.character))
# A tibble: 94 × 24
   chr   src    feat      start   end score strand frame gene_id gene_…¹ gene_…²
   <chr> <chr>  <chr>     <dbl> <dbl> <chr> <chr>  <chr> <chr>   <chr>   <chr>  
 1 chr1  HAVANA gene      11869 14409 .     +      .     ENSG00… transc… DDX11L1
 2 chr1  HAVANA transcri… 11869 14409 .     +      .     ENSG00… transc… DDX11L1
 3 chr1  HAVANA exon      11869 12227 .     +      .     ENSG00… transc… DDX11L1
 4 chr1  HAVANA exon      12613 12721 .     +      .     ENSG00… transc… DDX11L1
 5 chr1  HAVANA exon      13221 14409 .     +      .     ENSG00… transc… DDX11L1
 6 chr1  HAVANA transcri… 12010 13670 .     +      .     ENSG00… transc… DDX11L1
 7 chr1  HAVANA exon      12010 12057 .     +      .     ENSG00… transc… DDX11L1
 8 chr1  HAVANA exon      12179 12227 .     +      .     ENSG00… transc… DDX11L1
 9 chr1  HAVANA exon      12613 12697 .     +      .     ENSG00… transc… DDX11L1
10 chr1  HAVANA exon      12975 13052 .     +      .     ENSG00… transc… DDX11L1
# … with 84 more rows, 13 more variables: level <chr>, hgnc_id <chr>,
#   havana_gene <chr>, transcript_id <chr>, transcript_type <chr>,
#   transcript_name <chr>, transcript_support_level <chr>, tag <chr>,
#   havana_transcript <chr>, exon_number <chr>, exon_id <chr>, ont <chr>,
#   protein_id <chr>, and abbreviated variable names ¹​gene_type, ²​gene_name

Summary

The following steps can be used to split a column containing key-value pairs into separate columns:

  1. Use separate_rows to split a single column into rows
  2. Use separate to split a key-value pair into two columns
  3. Use pivot_wider to convert the long format table back to wide format

However, sometimes data is packed into a single column because it cannot be nicely formatted in the first place.


sessionInfo()
R version 4.2.0 (2022-04-22)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 20.04.4 LTS

Matrix products: default
BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/liblapack.so.3

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] importbio_0.0.0.9000 remotes_2.4.2        forcats_0.5.1       
 [4] stringr_1.4.0        dplyr_1.0.9          purrr_0.3.4         
 [7] readr_2.1.2          tidyr_1.2.0          tibble_3.1.8        
[10] ggplot2_3.3.6        tidyverse_1.3.1      workflowr_1.7.0     

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.8.3     lubridate_1.8.0  getPass_0.2-2    ps_1.7.0        
 [5] assertthat_0.2.1 rprojroot_2.0.3  digest_0.6.29    utf8_1.2.2      
 [9] R6_2.5.1         cellranger_1.1.0 backports_1.4.1  reprex_2.0.1    
[13] evaluate_0.15    httr_1.4.3       pillar_1.8.1     rlang_1.0.4     
[17] curl_4.3.2       readxl_1.4.0     rstudioapi_0.13  whisker_0.4     
[21] callr_3.7.0      jquerylib_0.1.4  rmarkdown_2.14   bit_4.0.4       
[25] munsell_0.5.0    broom_0.8.0      compiler_4.2.0   httpuv_1.6.5    
[29] modelr_0.1.8     xfun_0.31        pkgconfig_2.0.3  htmltools_0.5.2 
[33] tidyselect_1.1.2 fansi_1.0.3      crayon_1.5.1     tzdb_0.3.0      
[37] dbplyr_2.1.1     withr_2.5.0      later_1.3.0      grid_4.2.0      
[41] jsonlite_1.8.0   gtable_0.3.0     lifecycle_1.0.1  DBI_1.1.2       
[45] git2r_0.30.1     magrittr_2.0.3   scales_1.2.0     vroom_1.5.7     
[49] cli_3.3.0        stringi_1.7.6    fs_1.5.2         promises_1.2.0.1
[53] xml2_1.3.3       bslib_0.3.1      ellipsis_0.3.2   generics_0.1.3  
[57] vctrs_0.4.1      tools_4.2.0      bit64_4.0.5      glue_1.6.2      
[61] hms_1.1.2        parallel_4.2.0   processx_3.5.3   fastmap_1.1.0   
[65] yaml_2.3.5       colorspace_2.0-3 rvest_1.0.2      knitr_1.39      
[69] haven_2.5.0      sass_0.4.1