Last updated: 2024-10-23

Checks: 7 0

Knit directory: muse/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20200712) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version e0abadf. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/pbmc3k.csv
    Ignored:    data/pbmc3k.csv.gz
    Ignored:    data/pbmc3k/
    Ignored:    r_packages_4.4.0/

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/edger_vs_deseq2.Rmd) and HTML (docs/edger_vs_deseq2.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd e0abadf Dave Tang 2024-10-23 Compare significances
html a658556 Dave Tang 2024-10-23 Build site.
Rmd e471135 Dave Tang 2024-10-23 edgeR versus DESeq2

Installation

Install packages using BiocManager::install().

if (!require("BiocManager", quietly = TRUE))
    install.packages("BiocManager")

BiocManager::install("edgeR")
BiocManager::install("DESeq2")

Count table

https://zenodo.org/records/13970886

my_url <- 'https://zenodo.org/records/13970886/files/rsem.merged.gene_counts.tsv?download=1'
my_file <- 'rsem.merged.gene_counts.tsv'

if(file.exists(my_file) == FALSE){
  download.file(url = my_url, destfile = my_file)
}

gene_counts <- read_tsv("rsem.merged.gene_counts.tsv", show_col_types = FALSE)
head(gene_counts)
# A tibble: 6 × 10
  gene_id   `transcript_id(s)` ERR160122 ERR160123 ERR160124 ERR164473 ERR164550
  <chr>     <chr>                  <dbl>     <dbl>     <dbl>     <dbl>     <dbl>
1 ENSG0000… ENST00000373020,E…        2         6         5      374       1637 
2 ENSG0000… ENST00000373031,E…       19        40        28        0          1 
3 ENSG0000… ENST00000371582,E…      268.      274.      429.     489        637 
4 ENSG0000… ENST00000367770,E…      360.      449.      566.     363.       606.
5 ENSG0000… ENST00000286031,E…      156.      185.      265.      85.4      312.
6 ENSG0000… ENST00000374003,E…       24        23        40     1181        423 
# ℹ 3 more variables: ERR164551 <dbl>, ERR164552 <dbl>, ERR164554 <dbl>

Metadata.

tibble::tribble(
  ~sample, ~run_id, ~group,
  "C2_norm", "ERR160122", "normal",
  "C3_norm", "ERR160123", "normal",
  "C5_norm", "ERR160124", "normal",
  "C1_norm", "ERR164473", "normal",
  "C1_cancer", "ERR164550", "cancer",
  "C2_cancer", "ERR164551", "cancer",
  "C3_cancer", "ERR164552", "cancer",
  "C5_cancer", "ERR164554", "cancer"
) -> my_metadata

my_metadata$group <- factor(my_metadata$group, levels = c('normal', 'cancer'))

Matrix.

gene_counts |>
  dplyr::select(starts_with("ERR")) |>
  mutate(across(everything(), as.integer)) |>
  as.matrix() -> gene_counts_mat

row.names(gene_counts_mat) <- gene_counts$gene_id

idx <- match(colnames(gene_counts_mat), my_metadata$run_id)
colnames(gene_counts_mat) <- my_metadata$sample[idx]

tail(gene_counts_mat)
                C2_norm C3_norm C5_norm C1_norm C1_cancer C2_cancer C3_cancer
ENSG00000293594       0       0       0       0         0         0         0
ENSG00000293595       3       5       3       0         0         0         0
ENSG00000293596       0       0       0       0         0         0         0
ENSG00000293597       1       2      11       1         2         3         1
ENSG00000293599       2       0       1       0         1         2         0
ENSG00000293600      45      59      85     561       789      1099       701
                C5_cancer
ENSG00000293594         0
ENSG00000293595         0
ENSG00000293596         0
ENSG00000293597         2
ENSG00000293599         0
ENSG00000293600       845

Remove genes that are lowly expressed.

keep <- rowSums(cpm(gene_counts_mat) > 0.5) >= 2

gene_counts_mat <- gene_counts_mat[keep, ]
tail(gene_counts_mat)
                C2_norm C3_norm C5_norm C1_norm C1_cancer C2_cancer C3_cancer
ENSG00000293576       0       7      12       0         0         0         0
ENSG00000293586     157     157     193      21        40        15         0
ENSG00000293587       3       3       5       0         2         1         0
ENSG00000293588       4       5       6       1         2         5         2
ENSG00000293595       3       5       3       0         0         0         0
ENSG00000293600      45      59      85     561       789      1099       701
                C5_cancer
ENSG00000293576         0
ENSG00000293586        10
ENSG00000293587         3
ENSG00000293588         3
ENSG00000293595         0
ENSG00000293600       845

edgeR workflow

y <- DGEList(
  counts = gene_counts_mat,
  group = my_metadata$group
)

y <- normLibSizes(y)

design <- model.matrix(~y$samples$group)
y <- estimateDisp(y, design, robust=TRUE)
fit <- glmQLFit(y, design, robust=TRUE)
res <- glmQLFTest(fit)

topTags(res, adjust.method = "BH")
Coefficient:  y$samples$groupcancer 
                    logFC   logCPM         F       PValue         FDR
ENSG00000289381 -7.412756 2.341373 127.60623 2.767866e-08 0.001035846
ENSG00000151834 -8.027915 3.644102  64.37842 1.049799e-06 0.003612063
ENSG00000250696 -8.602174 3.809297  63.66033 1.249401e-06 0.003612063
ENSG00000229894 -9.123230 4.910552  60.16361 1.751012e-06 0.003612063
ENSG00000100985  5.735426 5.769059  99.70828 2.012691e-06 0.003612063
ENSG00000167910 -8.022082 3.453041  56.63286 2.199494e-06 0.003612063
ENSG00000196778 -8.815389 4.237774  56.19864 2.296578e-06 0.003612063
ENSG00000166091 -7.247200 2.881457  54.63510 2.658697e-06 0.003612063
ENSG00000240890 -9.077199 4.702122  53.69560 3.074356e-06 0.003612063
ENSG00000224781 -7.116543 2.556254  51.43346 3.645089e-06 0.003612063

DESeq2 workflow

lung_cancer <- DESeqDataSetFromMatrix(
  countData = gene_counts_mat,
  colData   = my_metadata,
  design    = ~ group
)

lung_cancer <- DESeq(lung_cancer)
estimating size factors
estimating dispersions
gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates
fitting model and testing
lung_cancer_res <- results(lung_cancer, pAdjustMethod = "BH")
lung_cancer_res[order(lung_cancer_res$padj), ] |> head(10)
log2 fold change (MLE): group cancer vs normal 
Wald test p-value: group cancer vs normal 
DataFrame with 10 rows and 6 columns
                 baseMean log2FoldChange     lfcSE      stat      pvalue
                <numeric>      <numeric> <numeric> <numeric>   <numeric>
ENSG00000211893 13264.627        6.54532  0.564034  11.60448 3.91049e-31
ENSG00000100985   627.926        5.35553  0.494870  10.82209 2.70522e-27
ENSG00000211892  4174.271        5.09062  0.482865  10.54252 5.50060e-26
ENSG00000169385   214.909       -4.60663  0.486305  -9.47271 2.72667e-21
ENSG00000172288   760.700      -27.98296  2.956493  -9.46492 2.93793e-21
ENSG00000236424  2182.510      -29.42478  3.099437  -9.49359 2.23219e-21
ENSG00000211897  6680.207        5.40162  0.574687   9.39924 5.49588e-21
ENSG00000211966   262.489        5.05816  0.539184   9.38115 6.52570e-21
ENSG00000290677   155.595       -4.71772  0.505092  -9.34033 9.60378e-21
ENSG00000182415   515.257      -27.44538  2.958942  -9.27541 1.76945e-20
                       padj
                  <numeric>
ENSG00000211893 1.43867e-26
ENSG00000100985 4.97625e-23
ENSG00000211892 6.74557e-22
ENSG00000169385 1.80144e-17
ENSG00000172288 1.80144e-17
ENSG00000236424 1.80144e-17
ENSG00000211897 2.88848e-17
ENSG00000211966 3.00101e-17
ENSG00000290677 3.92581e-17
ENSG00000182415 5.91801e-17

Compare differentially expressed genes

my_thres <- 0.01

topTags(res, n = Inf, adjust.method = "BH") |>
  as.data.frame() |>
  dplyr::filter(FDR < my_thres) |>
  row.names() -> edger_degs

lung_cancer_res |>
  as.data.frame() |>
  dplyr::filter(padj < my_thres) |>
  row.names() -> deseq2_degs

jaccard_index <- function(set1, set2) {
  length(intersect(set1, set2)) / length(union(set1, set2))
}

jaccard_index(edger_degs, deseq2_degs)
[1] 0.2256522

DESeq2 returns a lot more differentially expressed genes (DEGs) than edgeR.

length(edger_degs)
[1] 3918
length(deseq2_degs)
[1] 17363

Compare top subset.

compare_degs <- function(my_topn){
  topTags(res, n = Inf, adjust.method = "BH") |>
    as.data.frame() |>
    dplyr::filter(FDR < my_thres) |>
    dplyr::slice_min(order_by = FDR, n = my_topn) |>
    row.names() -> edger_degs_topn
  
  lung_cancer_res |>
    as.data.frame() |>
    dplyr::filter(padj < my_thres) |>
    dplyr::slice_min(order_by = padj, n = my_topn) |>
    row.names() -> deseq2_degs_topn
  
  jaccard_index(edger_degs_topn, deseq2_degs_topn)
}

compare_degs(500)
[1] 0.245122

Jaccard indexes.

ns <- seq(100, 3500, 100)
jis <- sapply(ns, compare_degs)

Plot.

data.frame(n = ns, index = jis) |>
  ggplot(aes(n, index)) +
  geom_point() +
  theme_minimal() +
  labs(x = 'Subset size', y = 'Jaccard Index')

Version Author Date
a658556 Dave Tang 2024-10-23

Compare significances

topTags(res, n = Inf, adjust.method = "BH") |>
  as.data.frame() -> edger_signif

lung_cancer_res |>
  as.data.frame() -> deseq2_signif

idx <- match(row.names(deseq2_signif), row.names(edger_signif))

my_signif <- cbind(edger_signif, deseq2_signif[idx, ])

my_signif |>
  dplyr::filter(FDR < my_thres) |>
  ggplot(aes(PValue, pvalue)) +
  geom_point() +
  theme_minimal() +
  labs(x = "edgeR p-value", y = "DESeq2 p-value")
Warning: Removed 41 rows containing missing values or values outside the scale range
(`geom_point()`).

Small subset of highly significant genes using edgeR but not significant using DESeq2.

my_signif |>
  dplyr::filter(FDR < my_thres) |>
  dplyr::filter(padj > 0.95) |>
  row.names() -> discordant
  
gene_counts_mat[discordant, ]
                C2_norm C3_norm C5_norm C1_norm C1_cancer C2_cancer C3_cancer
ENSG00000229894     480     620     873       7         1         2         3
ENSG00000237931      76     165     117       2         3         2         0
ENSG00000236761    2682    3073    4410       8         9         2         9
ENSG00000245205     199     195     315       0         2         1         5
ENSG00000250130      30      36      47       2         2         3         1
ENSG00000231292      51      53      66       1         0         3         2
ENSG00000230445    2060    2282    3393      12         8        14         3
ENSG00000235847      81     102     147       0         1         0         0
ENSG00000155875     158     211     295       5         6         6        11
ENSG00000184100     676     765    1046       9        14        13        14
ENSG00000254042      26      21      31       0         2         1         1
ENSG00000215241     174     314     325      13         7        18        20
ENSG00000279058     892    1175    1370      13        26        20        14
ENSG00000290655     210     169     368       0         0         0         0
ENSG00000249077      16      27      19       0         1         1         1
ENSG00000257818     110     140     192      10         4         3        14
ENSG00000257225     236     337     532      11         0         2        17
ENSG00000233771      21      37      71       0         0         0         1
ENSG00000228960     201     485     665       0         0        14         0
ENSG00000164743     290     337     399      21        14        44        31
ENSG00000214184      47      33      56       0         4         4         3
ENSG00000242199      17      18      36       0         0         2         1
ENSG00000167941      11      17      37       1         1         0         3
ENSG00000229492       9      47      76       1         0         1         1
ENSG00000289604    2543    2097    3181      56       158       116        89
                C5_cancer
ENSG00000229894         2
ENSG00000237931         1
ENSG00000236761         5
ENSG00000245205         4
ENSG00000250130         4
ENSG00000231292         0
ENSG00000230445        18
ENSG00000235847         3
ENSG00000155875         7
ENSG00000184100        20
ENSG00000254042         0
ENSG00000215241        12
ENSG00000279058        31
ENSG00000290655         2
ENSG00000249077         0
ENSG00000257818        12
ENSG00000257225        10
ENSG00000233771         2
ENSG00000228960         0
ENSG00000164743        26
ENSG00000214184         0
ENSG00000242199         0
ENSG00000167941         0
ENSG00000229492         0
ENSG00000289604       123

sessionInfo()
R version 4.4.0 (2024-04-24)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 22.04.4 LTS

Matrix products: default
BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 
LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so;  LAPACK version 3.10.0

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

time zone: Etc/UTC
tzcode source: system (glibc)

attached base packages:
[1] stats4    stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
 [1] pheatmap_1.0.12             ggrepel_0.9.5              
 [3] DESeq2_1.44.0               SummarizedExperiment_1.34.0
 [5] Biobase_2.64.0              MatrixGenerics_1.16.0      
 [7] matrixStats_1.3.0           GenomicRanges_1.56.1       
 [9] GenomeInfoDb_1.40.1         IRanges_2.38.1             
[11] S4Vectors_0.42.1            BiocGenerics_0.50.0        
[13] edgeR_4.2.1                 limma_3.60.4               
[15] lubridate_1.9.3             forcats_1.0.0              
[17] stringr_1.5.1               dplyr_1.1.4                
[19] purrr_1.0.2                 readr_2.1.5                
[21] tidyr_1.3.1                 tibble_3.2.1               
[23] ggplot2_3.5.1               tidyverse_2.0.0            
[25] workflowr_1.7.1            

loaded via a namespace (and not attached):
 [1] tidyselect_1.2.1        farver_2.1.2            fastmap_1.2.0          
 [4] promises_1.3.0          digest_0.6.37           timechange_0.3.0       
 [7] lifecycle_1.0.4         statmod_1.5.0           processx_3.8.4         
[10] magrittr_2.0.3          compiler_4.4.0          rlang_1.1.4            
[13] sass_0.4.9              tools_4.4.0             utf8_1.2.4             
[16] yaml_2.3.8              knitr_1.47              labeling_0.4.3         
[19] S4Arrays_1.4.1          bit_4.0.5               DelayedArray_0.30.1    
[22] RColorBrewer_1.1-3      abind_1.4-5             BiocParallel_1.38.0    
[25] withr_3.0.1             grid_4.4.0              fansi_1.0.6            
[28] git2r_0.33.0            colorspace_2.1-0        scales_1.3.0           
[31] cli_3.6.3               rmarkdown_2.27          crayon_1.5.2           
[34] generics_0.1.3          rstudioapi_0.16.0       httr_1.4.7             
[37] tzdb_0.4.0              cachem_1.1.0            splines_4.4.0          
[40] zlibbioc_1.50.0         parallel_4.4.0          XVector_0.44.0         
[43] vctrs_0.6.5             Matrix_1.7-0            jsonlite_1.8.8         
[46] callr_3.7.6             hms_1.1.3               bit64_4.0.5            
[49] locfit_1.5-9.9          jquerylib_0.1.4         glue_1.7.0             
[52] codetools_0.2-20        ps_1.7.6                stringi_1.8.4          
[55] gtable_0.3.5            later_1.3.2             UCSC.utils_1.0.0       
[58] munsell_0.5.1           pillar_1.9.0            htmltools_0.5.8.1      
[61] GenomeInfoDbData_1.2.12 R6_2.5.1                rprojroot_2.0.4        
[64] vroom_1.6.5             evaluate_0.24.0         lattice_0.22-6         
[67] highr_0.11              httpuv_1.6.15           bslib_0.7.0            
[70] Rcpp_1.0.12             SparseArray_1.4.8       whisker_0.4.1          
[73] xfun_0.44               fs_1.6.4                getPass_0.2-4          
[76] pkgconfig_2.0.3