Last updated: 2025-02-22

Checks: 7 0

Knit directory: muse/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20200712) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 6c0d4f0. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rproj.user/
    Ignored:    data/1M_neurons_filtered_gene_bc_matrices_h5.h5
    Ignored:    data/293t/
    Ignored:    data/293t_3t3_filtered_gene_bc_matrices.tar.gz
    Ignored:    data/293t_filtered_gene_bc_matrices.tar.gz
    Ignored:    data/5k_Human_Donor1_PBMC_3p_gem-x_5k_Human_Donor1_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5
    Ignored:    data/5k_Human_Donor2_PBMC_3p_gem-x_5k_Human_Donor2_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5
    Ignored:    data/5k_Human_Donor3_PBMC_3p_gem-x_5k_Human_Donor3_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5
    Ignored:    data/5k_Human_Donor4_PBMC_3p_gem-x_5k_Human_Donor4_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5
    Ignored:    data/Parent_SC3v3_Human_Glioblastoma_filtered_feature_bc_matrix.tar.gz
    Ignored:    data/brain_counts/
    Ignored:    data/cl.obo
    Ignored:    data/cl.owl
    Ignored:    data/jurkat/
    Ignored:    data/jurkat:293t_50:50_filtered_gene_bc_matrices.tar.gz
    Ignored:    data/jurkat_293t/
    Ignored:    data/jurkat_filtered_gene_bc_matrices.tar.gz
    Ignored:    data/pbmc20k/
    Ignored:    data/pbmc3k/
    Ignored:    data/pbmc4k_filtered_gene_bc_matrices.tar.gz
    Ignored:    data/refdata-gex-GRCh38-2020-A.tar.gz
    Ignored:    data/seurat_1m_neuron.rds
    Ignored:    data/t_3k_filtered_gene_bc_matrices.tar.gz
    Ignored:    r_packages_4.4.1/

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/pbmc20k.Rmd) and HTML (docs/pbmc20k.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 6c0d4f0 Dave Tang 2025-02-22 Convert sparse matrix to iterable matrix
html f6301ec Dave Tang 2025-02-22 Build site.
Rmd 22af89e Dave Tang 2025-02-22 Analysing 20k cells

Read HDF5 files into a list.

hdf5_files <- list.files(path = "data", pattern = "5k_Human", full.names = TRUE)
hdf5_files
[1] "data/5k_Human_Donor1_PBMC_3p_gem-x_5k_Human_Donor1_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5"
[2] "data/5k_Human_Donor2_PBMC_3p_gem-x_5k_Human_Donor2_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5"
[3] "data/5k_Human_Donor3_PBMC_3p_gem-x_5k_Human_Donor3_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5"
[4] "data/5k_Human_Donor4_PBMC_3p_gem-x_5k_Human_Donor4_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5"

Read raw counts into a list of matrices.

mats <- purrr::map(seq_along(hdf5_files), function(x){
  my_mat <- Seurat::Read10X_h5(hdf5_files[x])
  colnames(my_mat) <- paste0('donor', x, '_', colnames(my_mat))
  my_mat
})
str(mats, max.level = 1)
List of 4
 $ :Formal class 'dgCMatrix' [package "Matrix"] with 6 slots
 $ :Formal class 'dgCMatrix' [package "Matrix"] with 6 slots
 $ :Formal class 'dgCMatrix' [package "Matrix"] with 6 slots
 $ :Formal class 'dgCMatrix' [package "Matrix"] with 6 slots

Create Seurat object from the list of matrices.

pbmc20k <- CreateSeuratObject(
  counts = mats,
  min.cells = 3,
  min.features = 200
)
pbmc20k
An object of class Seurat 
27385 features across 22061 samples within 1 assay 
Active assay: RNA (27385 features, 0 variable features)
 4 layers present: counts.1, counts.2, counts.3, counts.4

Create one count layer.

pbmc20k <- JoinLayers(pbmc20k)
pbmc20k
An object of class Seurat 
27385 features across 22061 samples within 1 assay 
Active assay: RNA (27385 features, 0 variable features)
 1 layer present: counts

Donor information in orig.ident.

head(pbmc20k@meta.data)
                          orig.ident nCount_RNA nFeature_RNA
donor1_AAACCAAAGGTGACGA-1     donor1      42833         7079
donor1_AAACCCTGTGACGAGT-1     donor1       4890         2102
donor1_AAACGAATCAGGCTAC-1     donor1      12498         3564
donor1_AAACGACAGATTGACT-1     donor1      22193         4366
donor1_AAACGATGTCTTGAAC-1     donor1      10305         2945
donor1_AAACGATGTGCGCGAA-1     donor1      15947         4160

Use {BPCells} to convert the matrices in your already created Seurat objects to on-disk matrices. Note, that this is only possible for V5 assays. Convert the counts matrix of the RNA assay to a BPCells matrix.

BPCells::write_matrix_dir(
  mat = BPCells::convert_matrix_type(matrix = pbmc20k@assays$RNA$counts, type = "uint32_t"),
  dir = 'data/pbmc20k',
  overwrite = TRUE
)
27385 x 22061 IterableMatrix object with class MatrixDir

Row names: ENSG00000238009, ENSG00000239945 ... AMELY
Col names: donor1_AAACCAAAGGTGACGA-1, donor1_AAACCCTGTGACGAGT-1 ... donor4_TGTGTTGAGTTACGGC-1

Data type: uint32_t
Storage order: column major

Queued Operations:
1. Load compressed matrix from directory /home/rstudio/muse/data/pbmc20k
pbmc20k.mat <- open_matrix_dir(dir = "data/pbmc20k")

pbmc20k@assays$RNA$counts <- pbmc20k.mat
pbmc20k@assays$RNA$counts
27385 x 22061 IterableMatrix object with class RenameDims

Row names: ENSG00000238009, ENSG00000239945 ... AMELY
Col names: donor1_AAACCAAAGGTGACGA-1, donor1_AAACCCTGTGACGAGT-1 ... donor4_TGTGTTGAGTTACGGC-1

Data type: uint32_t
Storage order: column major

Queued Operations:
1. Load compressed matrix from directory /home/rstudio/muse/data/pbmc20k
2. Reset dimnames

Process.

options(future.globals.maxSize = 2 * 1024^3)

fixed_PrepDR5 <- function(object, features = NULL, layer = 'scale.data', verbose = TRUE) {
  layer <- layer[1L]
  olayer <- layer
  layer <- SeuratObject::Layers(object = object, search = layer)
  if (is.null(layer)) {
    abort(paste0("No layer matching pattern '", olayer, "' not found. Please run ScaleData and retry"))
  }
  data.use <- SeuratObject::LayerData(object = object, layer = layer)
  features <- features %||% VariableFeatures(object = object)
  if (!length(x = features)) {
    stop("No variable features, run FindVariableFeatures() or provide a vector of features", call. = FALSE)
  }
  if (is(data.use, "IterableMatrix")) {
    features.var <- BPCells::matrix_stats(matrix=data.use, row_stats="variance")$row_stats["variance",]
  } else {
    features.var <- apply(X = data.use, MARGIN = 1L, FUN = var)
  }
  features.keep <- features[features.var > 0]
  if (!length(x = features.keep)) {
    stop("None of the requested features have any variance", call. = FALSE)
  } else if (length(x = features.keep) < length(x = features)) {
    exclude <- setdiff(x = features, y = features.keep)
    if (isTRUE(x = verbose)) {
      warning(
        "The following ",
        length(x = exclude),
        " features requested have zero variance; running reduction without them: ",
        paste(exclude, collapse = ', '),
        call. = FALSE,
        immediate. = TRUE
      )
    }
  }
  features <- features.keep
  features <- features[!is.na(x = features)]
  features.use <- features[features %in% rownames(data.use)]
  if(!isTRUE(all.equal(features, features.use))) {
    missing_features <- setdiff(features, features.use)
    if(length(missing_features) > 0) {
    warning_message <- paste("The following features were not available: ",
                             paste(missing_features, collapse = ", "),
                             ".", sep = "")
    warning(warning_message, immediate. = TRUE)
    }
  }
  data.use <- data.use[features.use, ]
  return(data.use)
}

assignInNamespace('PrepDR5', fixed_PrepDR5, 'Seurat')

seurat_wf_v4 <- function(seurat_obj, scale_factor = 1e4, num_features = 2000, num_pcs = 30, cluster_res = 0.5, debug_flag = FALSE){
  
  seurat_obj <- NormalizeData(seurat_obj, normalization.method = "LogNormalize", scale.factor = scale_factor, verbose = debug_flag)
  seurat_obj <- FindVariableFeatures(seurat_obj, selection.method = 'vst', nfeatures = num_features, verbose = debug_flag)
  seurat_obj <- ScaleData(seurat_obj, verbose = debug_flag)
  seurat_obj <- RunPCA(seurat_obj, verbose = debug_flag)
  seurat_obj <- RunHarmony(seurat_obj, "orig.ident")
  seurat_obj <- RunUMAP(seurat_obj, reduction = "harmony",  dims = 1:num_pcs, verbose = debug_flag)
  
  seurat_obj
}

pbmc20k <- seurat_wf_v4(pbmc20k)
Transposing data matrix
Initializing state using k-means centroids initialization
Harmony 1/10
Harmony 2/10
Harmony 3/10
Harmony converged after 3 iterations
Warning: The default method for RunUMAP has changed from calling Python UMAP via reticulate to the R-native UWOT using the cosine metric
To use Python UMAP via reticulate, set umap.method to 'umap-learn' and metric to 'correlation'
This message will be shown once per session

UMAP.

DimPlot(pbmc20k, reduction = "umap", group.by = "orig.ident", pt.size = .1)

Version Author Date
f6301ec Dave Tang 2025-02-22

sessionInfo()
R version 4.4.1 (2024-06-14)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 22.04.5 LTS

Matrix products: default
BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 
LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so;  LAPACK version 3.10.0

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

time zone: Etc/UTC
tzcode source: system (glibc)

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] BPCells_0.3.0      Seurat_5.1.0       SeuratObject_5.0.2 sp_2.1-4          
 [5] harmony_1.2.1      Rcpp_1.0.13        patchwork_1.3.0    lubridate_1.9.3   
 [9] forcats_1.0.0      stringr_1.5.1      dplyr_1.1.4        purrr_1.0.2       
[13] readr_2.1.5        tidyr_1.3.1        tibble_3.2.1       ggplot2_3.5.1     
[17] tidyverse_2.0.0    workflowr_1.7.1   

loaded via a namespace (and not attached):
  [1] RColorBrewer_1.1-3     rstudioapi_0.17.1      jsonlite_1.8.9        
  [4] magrittr_2.0.3         spatstat.utils_3.1-0   farver_2.1.2          
  [7] rmarkdown_2.28         fs_1.6.4               vctrs_0.6.5           
 [10] ROCR_1.0-11            spatstat.explore_3.3-3 htmltools_0.5.8.1     
 [13] sass_0.4.9             sctransform_0.4.1      parallelly_1.38.0     
 [16] KernSmooth_2.23-24     bslib_0.8.0            htmlwidgets_1.6.4     
 [19] ica_1.0-3              plyr_1.8.9             plotly_4.10.4         
 [22] zoo_1.8-12             cachem_1.1.0           whisker_0.4.1         
 [25] igraph_2.1.1           mime_0.12              lifecycle_1.0.4       
 [28] pkgconfig_2.0.3        Matrix_1.7-0           R6_2.5.1              
 [31] fastmap_1.2.0          MatrixGenerics_1.18.1  fitdistrplus_1.2-1    
 [34] future_1.34.0          shiny_1.9.1            digest_0.6.37         
 [37] colorspace_2.1-1       ps_1.8.1               rprojroot_2.0.4       
 [40] tensor_1.5             RSpectra_0.16-2        irlba_2.3.5.1         
 [43] labeling_0.4.3         progressr_0.15.0       fansi_1.0.6           
 [46] spatstat.sparse_3.1-0  timechange_0.3.0       httr_1.4.7            
 [49] polyclip_1.10-7        abind_1.4-8            compiler_4.4.1        
 [52] bit64_4.5.2            withr_3.0.2            fastDummies_1.7.4     
 [55] highr_0.11             MASS_7.3-60.2          tools_4.4.1           
 [58] lmtest_0.9-40          httpuv_1.6.15          future.apply_1.11.3   
 [61] goftest_1.2-3          glue_1.8.0             callr_3.7.6           
 [64] nlme_3.1-164           promises_1.3.0         grid_4.4.1            
 [67] Rtsne_0.17             getPass_0.2-4          cluster_2.1.6         
 [70] reshape2_1.4.4         generics_0.1.3         hdf5r_1.3.11          
 [73] gtable_0.3.6           spatstat.data_3.1-2    tzdb_0.4.0            
 [76] data.table_1.16.2      hms_1.1.3              utf8_1.2.4            
 [79] spatstat.geom_3.3-3    RcppAnnoy_0.0.22       ggrepel_0.9.6         
 [82] RANN_2.6.2             pillar_1.9.0           spam_2.11-0           
 [85] RcppHNSW_0.6.0         later_1.3.2            splines_4.4.1         
 [88] lattice_0.22-6         bit_4.5.0              deldir_2.0-4          
 [91] survival_3.6-4         tidyselect_1.2.1       miniUI_0.1.1.1        
 [94] pbapply_1.7-2          knitr_1.48             git2r_0.35.0          
 [97] gridExtra_2.3          scattermore_1.2        RhpcBLASctl_0.23-42   
[100] xfun_0.48              matrixStats_1.4.1      stringi_1.8.4         
[103] lazyeval_0.2.2         yaml_2.3.10            evaluate_1.0.1        
[106] codetools_0.2-20       cli_3.6.3              uwot_0.2.2            
[109] xtable_1.8-4           reticulate_1.39.0      munsell_0.5.1         
[112] processx_3.8.4         jquerylib_0.1.4        spatstat.random_3.3-2 
[115] globals_0.16.3         png_0.1-8              spatstat.univar_3.0-1 
[118] parallel_4.4.1         dotCall64_1.2          listenv_0.9.1         
[121] viridisLite_0.4.2      scales_1.3.0           ggridges_0.5.6        
[124] leiden_0.4.3.1         rlang_1.1.4            cowplot_1.1.3