• Installation
  • References

Last updated: 2025-02-13

Checks: 7 0

Knit directory: muse/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20200712) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 329c881. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rproj.user/
    Ignored:    data/1M_neurons_filtered_gene_bc_matrices_h5.h5
    Ignored:    data/brain_counts/
    Ignored:    data/seurat_1m_neuron.rds
    Ignored:    r_packages_4.4.1/

Unstaged changes:
    Modified:   analysis/seurat_bpcells.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/celldex.Rmd) and HTML (docs/celldex.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 329c881 Dave Tang 2025-02-13 Pokedex for cell types

The celldex package provides convenient access to several cell type reference datasets. Most of these references are derived from bulk RNA-seq or microarray data of cell populations that (hopefully) consist of a pure cell type after sorting and/or culturing. The aim is to provide a common resource for further analysis like cell type annotation of single cell expression data or deconvolution of cell type proportions in bulk expression datasets.

Installation

Install celldex.

if (!require("BiocManager", quietly = TRUE))
    install.packages("BiocManager")

BiocManager::install("celldex")

References

We can examine the available references using the surveyReferences() function. This returns a DataFrame of the reference’s name and version, along with additional information like the title, description, species, number of samples, available labels, and so on.

suppressPackageStartupMessages(library(celldex))
surveyReferences()
DataFrame with 7 rows and 10 columns
                    name     version        path                  title
             <character> <character> <character>            <character>
1                   dice  2024-02-26          NA Human bulk RNA-seq d..
2       blueprint_encode  2024-02-26          NA Human bulk RNA-seq d..
3                 immgen  2024-02-26          NA Mouse microarray exp..
4           mouse_rnaseq  2024-02-26          NA Bulk RNA-seq data of..
5                   hpca  2024-02-26          NA Microarray data from..
6 novershtern_hematopo..  2024-02-26          NA Bulk microarray expr..
7          monaco_immune  2024-02-26          NA Human bulk RNA-seq d..
             description taxonomy_id  genome   samples
             <character>      <List>  <List> <integer>
1 Human bulk RNA-seq d..        9606              1561
2 Human bulk RNA-seq d..        9606               259
3 Mouse microarray exp..       10090               830
4 Bulk RNA-seq data of..       10090 MGSCv37       358
5 Microarray data from..        9606               713
6 Bulk microarray expr..        9606               211
7 Human bulk RNA-seq d..        9606  GRCh38       114
                           labels
                           <List>
1 label.main,label.fine,label.ont
2 label.main,label.fine,label.ont
3 label.main,label.fine,label.ont
4 label.main,label.fine,label.ont
5 label.main,label.fine,label.ont
6 label.main,label.fine,label.ont
7 label.main,label.fine,label.ont
                                                                               sources
                                                                  <SplitDataFrameList>
1                   PubMed:30449622:NA,ExperimentHub:EH3488:NA,ExperimentHub:EH3489:NA
2                             PubMed:22955616:NA,PubMed:24091925:NA,PubMed:30643263:NA
3                                   PubMed:18800157:NA,GEO:GSE15907:NA,GEO:GSE37448:NA
4                  PubMed:30858345:NA,URL:https://github.com/B..:NA,PubMed:30643263:NA
5 PubMed:24053356:NA,PubMed:30643263:NA,GitHub:dviraran/SingleR:adc4a0e4d5cfa79db18f..
6                           PubMed:21241896:NA,GEO:GSE24759:NA,ExperimentHub:EH3490:NA
7                          PubMed:30726743:NA,GEO:GSE107011:NA,ExperimentHub:EH3496:NA

sessionInfo()
R version 4.4.1 (2024-06-14)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 22.04.5 LTS

Matrix products: default
BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 
LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so;  LAPACK version 3.10.0

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

time zone: Etc/UTC
tzcode source: system (glibc)

attached base packages:
[1] stats4    stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
 [1] celldex_1.16.0              SummarizedExperiment_1.36.0
 [3] Biobase_2.66.0              GenomicRanges_1.58.0       
 [5] GenomeInfoDb_1.42.3         IRanges_2.40.1             
 [7] S4Vectors_0.44.0            BiocGenerics_0.52.0        
 [9] MatrixGenerics_1.18.1       matrixStats_1.4.1          
[11] workflowr_1.7.1            

loaded via a namespace (and not attached):
 [1] tidyselect_1.2.1          alabaster.se_1.6.0       
 [3] dplyr_1.1.4               blob_1.2.4               
 [5] filelock_1.0.3            Biostrings_2.74.1        
 [7] fastmap_1.2.0             BiocFileCache_2.14.0     
 [9] promises_1.3.0            digest_0.6.37            
[11] lifecycle_1.0.4           alabaster.matrix_1.6.1   
[13] processx_3.8.4            KEGGREST_1.46.0          
[15] alabaster.base_1.6.1      RSQLite_2.3.7            
[17] magrittr_2.0.3            compiler_4.4.1           
[19] rlang_1.1.4               sass_0.4.9               
[21] tools_4.4.1               utf8_1.2.4               
[23] yaml_2.3.10               knitr_1.48               
[25] S4Arrays_1.6.0            bit_4.5.0                
[27] curl_5.2.3                DelayedArray_0.32.0      
[29] abind_1.4-8               HDF5Array_1.34.0         
[31] gypsum_1.2.0              grid_4.4.1               
[33] fansi_1.0.6               ExperimentHub_2.14.0     
[35] git2r_0.35.0              Rhdf5lib_1.28.0          
[37] cli_3.6.3                 rmarkdown_2.28           
[39] crayon_1.5.3              generics_0.1.3           
[41] rstudioapi_0.17.1         httr_1.4.7               
[43] DelayedMatrixStats_1.28.1 rhdf5_2.50.2             
[45] DBI_1.2.3                 cachem_1.1.0             
[47] stringr_1.5.1             zlibbioc_1.52.0          
[49] parallel_4.4.1            AnnotationDbi_1.68.0     
[51] BiocManager_1.30.25       XVector_0.46.0           
[53] alabaster.schemas_1.6.0   vctrs_0.6.5              
[55] Matrix_1.7-0              jsonlite_1.8.9           
[57] callr_3.7.6               bit64_4.5.2              
[59] alabaster.ranges_1.6.0    jquerylib_0.1.4          
[61] glue_1.8.0                ps_1.8.1                 
[63] stringi_1.8.4             BiocVersion_3.20.0       
[65] later_1.3.2               UCSC.utils_1.2.0         
[67] tibble_3.2.1              pillar_1.9.0             
[69] rhdf5filters_1.18.0       rappdirs_0.3.3           
[71] htmltools_0.5.8.1         GenomeInfoDbData_1.2.13  
[73] httr2_1.0.5               R6_2.5.1                 
[75] dbplyr_2.5.0              sparseMatrixStats_1.18.0 
[77] rprojroot_2.0.4           evaluate_1.0.1           
[79] lattice_0.22-6            AnnotationHub_3.14.0     
[81] png_0.1-8                 memoise_2.0.1            
[83] httpuv_1.6.15             bslib_0.8.0              
[85] Rcpp_1.0.13               SparseArray_1.6.1        
[87] whisker_0.4.1             xfun_0.48                
[89] fs_1.6.4                  getPass_0.2-4            
[91] pkgconfig_2.0.3