Last updated: 2024-08-29

Checks: 7 0

Knit directory: muse/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20200712) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version f4c0b1d. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    r_packages_4.3.3/
    Ignored:    r_packages_4.4.0/

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/bench.Rmd) and HTML (docs/bench.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd f4c0b1d Dave Tang 2024-08-29 Benchmarking R expressions

The goal of the {bench} package is to benchmark code, tracking execution time, memory allocations and garbage collections.

You can install the release version from CRAN with:

install.packages("bench")

bench::mark() is used to benchmark one or a series of expressions, we feel it has a number of advantages over alternatives.

The times and memory usage are returned as custom objects which have human readable formatting for display (e.g. 104ns) and comparisons (e.g. x$mem_alloc > "10MB").

There is also full support for plotting with {ggplot2} including custom scales and formatting.

Usage

Benchmarks can be run with bench::mark(), which takes one or more expressions to benchmark against each other. Returns a tibble with the additional summary columns; the following summary columns are computed:

library(bench)

bench::mark(
  runif(n = 1000000)
)
# A tibble: 1 × 6
  expression            min   median `itr/sec` mem_alloc `gc/sec`
  <bch:expr>       <bch:tm> <bch:tm>     <dbl> <bch:byt>    <dbl>
1 runif(n = 1e+06)   21.4ms   21.5ms      46.3    7.63MB     9.74

system_time()

{bench} also includes system_time(), a higher precision alternative to system.time().

system.time(Sys.sleep(.5))
   user  system elapsed 
  0.001   0.000   0.501 
bench::system_time(Sys.sleep(.5))
process    real 
  100µs   501ms 

sessionInfo()
R version 4.4.0 (2024-04-24)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 22.04.4 LTS

Matrix products: default
BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 
LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so;  LAPACK version 3.10.0

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

time zone: Etc/UTC
tzcode source: system (glibc)

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] bench_1.1.3     workflowr_1.7.1

loaded via a namespace (and not attached):
 [1] jsonlite_1.8.8    compiler_4.4.0    promises_1.3.0    Rcpp_1.0.12      
 [5] stringr_1.5.1     git2r_0.33.0      callr_3.7.6       later_1.3.2      
 [9] jquerylib_0.1.4   yaml_2.3.8        fastmap_1.2.0     R6_2.5.1         
[13] knitr_1.47        tibble_3.2.1      rprojroot_2.0.4   bslib_0.7.0      
[17] pillar_1.9.0      rlang_1.1.4       utf8_1.2.4        cachem_1.1.0     
[21] stringi_1.8.4     httpuv_1.6.15     xfun_0.44         getPass_0.2-4    
[25] fs_1.6.4          sass_0.4.9        cli_3.6.3         magrittr_2.0.3   
[29] ps_1.7.6          digest_0.6.37     processx_3.8.4    rstudioapi_0.16.0
[33] lifecycle_1.0.4   vctrs_0.6.5       evaluate_0.24.0   glue_1.7.0       
[37] whisker_0.4.1     profmem_0.6.0     fansi_1.0.6       rmarkdown_2.27   
[41] httr_1.4.7        tools_4.4.0       pkgconfig_2.0.3   htmltools_0.5.8.1