• Dependencies
  • Data
  • Create objects
  • Predict doublets
  • Data subset

Last updated: 2025-03-05

Checks: 7 0

Knit directory: muse/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20200712) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 0f01531. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rproj.user/
    Ignored:    data/1M_neurons_filtered_gene_bc_matrices_h5.h5
    Ignored:    data/293t/
    Ignored:    data/293t_3t3_filtered_gene_bc_matrices.tar.gz
    Ignored:    data/293t_filtered_gene_bc_matrices.tar.gz
    Ignored:    data/5k_Human_Donor1_PBMC_3p_gem-x_5k_Human_Donor1_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5
    Ignored:    data/5k_Human_Donor2_PBMC_3p_gem-x_5k_Human_Donor2_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5
    Ignored:    data/5k_Human_Donor3_PBMC_3p_gem-x_5k_Human_Donor3_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5
    Ignored:    data/5k_Human_Donor4_PBMC_3p_gem-x_5k_Human_Donor4_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5
    Ignored:    data/Parent_SC3v3_Human_Glioblastoma_filtered_feature_bc_matrix.tar.gz
    Ignored:    data/brain_counts/
    Ignored:    data/cl.obo
    Ignored:    data/cl.owl
    Ignored:    data/jurkat/
    Ignored:    data/jurkat:293t_50:50_filtered_gene_bc_matrices.tar.gz
    Ignored:    data/jurkat_293t/
    Ignored:    data/jurkat_filtered_gene_bc_matrices.tar.gz
    Ignored:    data/pbmc20k/
    Ignored:    data/pbmc20k_seurat/
    Ignored:    data/pbmc3k/
    Ignored:    data/pbmc4k_filtered_gene_bc_matrices.tar.gz
    Ignored:    data/refdata-gex-GRCh38-2020-A.tar.gz
    Ignored:    data/seurat_1m_neuron.rds
    Ignored:    data/t_3k_filtered_gene_bc_matrices.tar.gz
    Ignored:    r_packages_4.4.1/

Untracked files:
    Untracked:  Nothobranchius_furzeri.Nfu_20140520.113.gtf.gz
    Untracked:  analysis/bioc_scrnaseq.Rmd
    Untracked:  data/pbmc_1k_v3_filtered_feature_bc_matrix.h5
    Untracked:  data/pbmc_1k_v3_raw_feature_bc_matrix.h5

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/scdblfinder.Rmd) and HTML (docs/scdblfinder.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 0f01531 Dave Tang 2025-03-05 Predicting doublets using scDblFinder

scDblFinder:

The scDblFinder package gathers various methods for the detection and handling of doublets/multiplets in single-cell sequencing data (i.e. multiple cells captured within the same droplet or reaction volume). It includes methods formerly found in the scran package, the new fast and comprehensive scDblFinder method, and a reimplementation of the Amulet detection method for single-cell ATAC-seq.

Dependencies

Install Bioconductor packages using BiocManager::install().

if (!require("BiocManager", quietly = TRUE))
  install.packages("BiocManager")

BiocManager::install("scDblFinder")
BiocManager::install("TENxIO")

Load libraries.

suppressPackageStartupMessages(library(scDblFinder))
suppressPackageStartupMessages(library(SingleCellExperiment))
suppressPackageStartupMessages(library(TENxIO))

Data

Download data.

filtered_h5_url <- 'https://cf.10xgenomics.com/samples/cell-exp/3.0.0/pbmc_1k_v3/pbmc_1k_v3_filtered_feature_bc_matrix.h5'
filtered_h5 <- paste0('data/', basename(filtered_h5_url))

download_file <- function(url, outfile){
  fn <- basename(url)
  if(file.exists(outfile) == FALSE){
    download.file(url, destfile = outfile)
  } else {
    message(paste0(outfile, " already exists"))
  }
}

download_file(filtered_h5_url, filtered_h5)
data/pbmc_1k_v3_filtered_feature_bc_matrix.h5 already exists

Create objects

Create SingleCellExperiment files.

create_sce_obj <- function(h5){
  con <- TENxH5(h5)
  import(con)
}

pbmc1k <- create_sce_obj(filtered_h5)
Warning in rhdf5::h5read(file, name = paste0(group, ranges), index = list(1L),
: Object 'matrix/features/interval' does not exist in this HDF5 file.
pbmc1k
class: SingleCellExperiment 
dim: 33538 1222 
metadata(1): TENxFile
assays(1): counts
rownames(33538): ENSG00000243485 ENSG00000237613 ... ENSG00000277475
  ENSG00000268674
rowData names(3): ID Symbol Type
colnames(1222): AAACCCAAGGAGAGTA-1 AAACGCTTCAGCCCAG-1 ...
  TTTGGTTGTAGAATAC-1 TTTGTTGCAATTAGGA-1
colData names(0):
reducedDimNames(0):
mainExpName: Gene Expression
altExpNames(0):

Predict doublets

Run scDblFinder().

pbmc1k.pred <- scDblFinder(pbmc1k)
Creating ~1500 artificial doublets...
Dimensional reduction
Evaluating kNN...
Training model...
iter=0, 155 cells excluded from training.
iter=1, 142 cells excluded from training.
iter=2, 135 cells excluded from training.
Threshold found:0.294
26 (2.1%) doublets called
colData(pbmc1k.pred) |>
  as.data.frame() -> pbmc1k.pred

head(pbmc1k.pred)
                   scDblFinder.class scDblFinder.score scDblFinder.weighted
AAACCCAAGGAGAGTA-1           singlet      0.0169715248           0.40543264
AAACGCTTCAGCCCAG-1           singlet      0.0008992357           0.29487536
AAAGAACAGACGACTG-1           singlet      0.0003129665           0.21450453
AAAGAACCAATGGCAG-1           singlet      0.0005328555           0.22582183
AAAGAACGTCTGCAAT-1           singlet      0.0127416188           0.37730614
AAAGGATAGTAGACAT-1           singlet      0.0020924010           0.07760762
                   scDblFinder.cxds_score
AAACCCAAGGAGAGTA-1            0.006469792
AAACGCTTCAGCCCAG-1            0.049250538
AAAGAACAGACGACTG-1            0.074387442
AAAGAACCAATGGCAG-1            0.050214668
AAAGAACGTCTGCAAT-1            0.103131556
AAAGGATAGTAGACAT-1            0.075818423

Plot scores per label.

boxplot(scDblFinder.score ~ scDblFinder.class, data = pbmc1k.pred, pch = 16)

Data subset

Since doublets are artifically generated using the available data, providing a different input should affect the scoring and prediction.

set.seed(1984)

n <- ceiling(ncol(pbmc1k)*0.9)
bcs <- sample(x = colnames(pbmc1k), size = n)

pbmc1k_subset <- pbmc1k[, bcs]
pbmc1k_subset
class: SingleCellExperiment 
dim: 33538 1100 
metadata(1): TENxFile
assays(1): counts
rownames(33538): ENSG00000243485 ENSG00000237613 ... ENSG00000277475
  ENSG00000268674
rowData names(3): ID Symbol Type
colnames(1100): AGGACGAAGACCTTTG-1 TTTATGCGTTGATCGT-1 ...
  GTCACTCTCTTGAACG-1 TTCAGGAGTCTACAAC-1
colData names(0):
reducedDimNames(0):
mainExpName: Gene Expression
altExpNames(0):

Predict doublets on the data subset.

pbmc1k_subset.pred <- scDblFinder(pbmc1k_subset)
Creating ~1500 artificial doublets...
Dimensional reduction
Evaluating kNN...
Training model...
iter=0, 136 cells excluded from training.
iter=1, 120 cells excluded from training.
iter=2, 118 cells excluded from training.
Threshold found:0.46
33 (3%) doublets called
colData(pbmc1k_subset.pred) |>
  as.data.frame() -> pbmc1k_subset.pred

idx <- match(
  row.names(pbmc1k_subset.pred),
  row.names(pbmc1k.pred)
)

x <- pbmc1k.pred[idx, ]$scDblFinder.score
y <- pbmc1k_subset.pred$scDblFinder.score

plot(x, y, pch = 16, xlab = 'Full dataset', ylab = 'Subset')


sessionInfo()
R version 4.4.1 (2024-06-14)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 22.04.5 LTS

Matrix products: default
BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 
LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so;  LAPACK version 3.10.0

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

time zone: Etc/UTC
tzcode source: system (glibc)

attached base packages:
[1] stats4    stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
 [1] TENxIO_1.8.2                scDblFinder_1.20.2         
 [3] SingleCellExperiment_1.28.1 SummarizedExperiment_1.36.0
 [5] Biobase_2.66.0              GenomicRanges_1.58.0       
 [7] GenomeInfoDb_1.42.3         IRanges_2.40.1             
 [9] S4Vectors_0.44.0            BiocGenerics_0.52.0        
[11] MatrixGenerics_1.18.1       matrixStats_1.4.1          
[13] workflowr_1.7.1            

loaded via a namespace (and not attached):
  [1] rstudioapi_0.17.1        jsonlite_1.8.9           magrittr_2.0.3          
  [4] ggbeeswarm_0.7.2         rmarkdown_2.28           fs_1.6.4                
  [7] BiocIO_1.16.0            zlibbioc_1.52.0          vctrs_0.6.5             
 [10] Rsamtools_2.22.0         RCurl_1.98-1.16          htmltools_0.5.8.1       
 [13] S4Arrays_1.6.0           BiocBaseUtils_1.8.0      curl_5.2.3              
 [16] BiocNeighbors_2.0.1      Rhdf5lib_1.28.0          xgboost_1.7.8.1         
 [19] SparseArray_1.6.1        rhdf5_2.50.2             sass_0.4.9              
 [22] bslib_0.8.0              cachem_1.1.0             GenomicAlignments_1.42.0
 [25] whisker_0.4.1            igraph_2.1.1             lifecycle_1.0.4         
 [28] pkgconfig_2.0.3          rsvd_1.0.5               Matrix_1.7-0            
 [31] R6_2.5.1                 fastmap_1.2.0            GenomeInfoDbData_1.2.13 
 [34] digest_0.6.37            colorspace_2.1-1         ps_1.8.1                
 [37] rprojroot_2.0.4          scater_1.34.0            dqrng_0.4.1             
 [40] irlba_2.3.5.1            beachmat_2.22.0          fansi_1.0.6             
 [43] httr_1.4.7               abind_1.4-8              compiler_4.4.1          
 [46] BiocParallel_1.40.0      viridis_0.6.5            highr_0.11              
 [49] HDF5Array_1.34.0         R.utils_2.12.3           MASS_7.3-60.2           
 [52] DelayedArray_0.32.0      rjson_0.2.23             bluster_1.16.0          
 [55] tools_4.4.1              vipor_0.4.7              beeswarm_0.4.0          
 [58] httpuv_1.6.15            R.oo_1.26.0              glue_1.8.0              
 [61] restfulr_0.0.15          callr_3.7.6              rhdf5filters_1.18.0     
 [64] promises_1.3.0           grid_4.4.1               getPass_0.2-4           
 [67] cluster_2.1.6            generics_0.1.3           gtable_0.3.6            
 [70] tzdb_0.4.0               R.methodsS3_1.8.2        data.table_1.16.2       
 [73] hms_1.1.3                BiocSingular_1.22.0      ScaledMatrix_1.14.0     
 [76] metapod_1.14.0           utf8_1.2.4               XVector_0.46.0          
 [79] ggrepel_0.9.6            pillar_1.9.0             stringr_1.5.1           
 [82] limma_3.62.2             later_1.3.2              dplyr_1.1.4             
 [85] lattice_0.22-6           rtracklayer_1.66.0       tidyselect_1.2.1        
 [88] locfit_1.5-9.10          Biostrings_2.74.1        scuttle_1.16.0          
 [91] knitr_1.48               git2r_0.35.0             gridExtra_2.3           
 [94] edgeR_4.4.2              xfun_0.48                statmod_1.5.0           
 [97] stringi_1.8.4            UCSC.utils_1.2.0         yaml_2.3.10             
[100] evaluate_1.0.1           codetools_0.2-20         tibble_3.2.1            
[103] cli_3.6.3                munsell_0.5.1            processx_3.8.4          
[106] jquerylib_0.1.4          Rcpp_1.0.13              XML_3.99-0.17           
[109] parallel_4.4.1           ggplot2_3.5.1            readr_2.1.5             
[112] scran_1.34.0             bitops_1.0-9             viridisLite_0.4.2       
[115] scales_1.3.0             crayon_1.5.3             rlang_1.1.4