Processing math: 100%
  • Seurat object
  • Seurat workflows
    • Data layer
    • Compare clustering

Last updated: 2025-03-11

Checks: 7 0

Knit directory: muse/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20200712) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 6139935. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rproj.user/
    Ignored:    data/1M_neurons_filtered_gene_bc_matrices_h5.h5
    Ignored:    data/293t/
    Ignored:    data/293t_3t3_filtered_gene_bc_matrices.tar.gz
    Ignored:    data/293t_filtered_gene_bc_matrices.tar.gz
    Ignored:    data/5k_Human_Donor1_PBMC_3p_gem-x_5k_Human_Donor1_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5
    Ignored:    data/5k_Human_Donor2_PBMC_3p_gem-x_5k_Human_Donor2_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5
    Ignored:    data/5k_Human_Donor3_PBMC_3p_gem-x_5k_Human_Donor3_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5
    Ignored:    data/5k_Human_Donor4_PBMC_3p_gem-x_5k_Human_Donor4_PBMC_3p_gem-x_count_sample_filtered_feature_bc_matrix.h5
    Ignored:    data/97516b79-8d08-46a6-b329-5d0a25b0be98.h5ad
    Ignored:    data/Parent_SC3v3_Human_Glioblastoma_filtered_feature_bc_matrix.tar.gz
    Ignored:    data/brain_counts/
    Ignored:    data/cl.obo
    Ignored:    data/cl.owl
    Ignored:    data/jurkat/
    Ignored:    data/jurkat:293t_50:50_filtered_gene_bc_matrices.tar.gz
    Ignored:    data/jurkat_293t/
    Ignored:    data/jurkat_filtered_gene_bc_matrices.tar.gz
    Ignored:    data/pbmc20k/
    Ignored:    data/pbmc20k_seurat/
    Ignored:    data/pbmc3k/
    Ignored:    data/pbmc3k_seurat.rds
    Ignored:    data/pbmc4k_filtered_gene_bc_matrices.tar.gz
    Ignored:    data/pbmc_1k_v3_filtered_feature_bc_matrix.h5
    Ignored:    data/pbmc_1k_v3_raw_feature_bc_matrix.h5
    Ignored:    data/refdata-gex-GRCh38-2020-A.tar.gz
    Ignored:    data/seurat_1m_neuron.rds
    Ignored:    data/t_3k_filtered_gene_bc_matrices.tar.gz
    Ignored:    r_packages_4.4.1/

Untracked files:
    Untracked:  analysis/bioc_scrnaseq.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/seurat_v4_vs_v5.Rmd) and HTML (docs/seurat_v4_vs_v5.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 6139935 Dave Tang 2025-03-11 Introduction to modelling variance
html 94116b1 Dave Tang 2025-03-10 Build site.
Rmd 4c187b3 Dave Tang 2025-03-10 Data layer
html 0d51a69 Dave Tang 2025-03-10 Build site.
Rmd 48661b3 Dave Tang 2025-03-10 Seurat version 4 vs. 5

The paper Comparison and evaluation of statistical error models for scRNA-seq is the basis for the default approach used in Seurat version 5. The following is text from the paper:

  • Heterogeneity in single-cell RNA-seq (scRNA-seq) data is driven by multiple sources, including biological variation in cellular state as well as technical variation introduced during experimental processing. Deconvolving these effects is a key challenge for preprocessing workflows.
    • Separating biological heterogeneity across cells that corresponds to differences in cell type and state from alternative sources of variation represents a key analytical challenge in the normalization and preprocessing of single-cell RNA-seq data.
  • Data normalization aims to adjust for differences in cellular sequencing depth, which collectively arise from fluctuations in cellular RNA content, efficiency in lysis and reverse transcription, and stochastic sampling during next-generation sequencing.
  • Variance stabilization aims to address the confounding relationship between gene abundance and gene variance, and to ensure that both lowly and highly expressed genes can contribute to the downstream definition of cellular state.

Using statistical models like Generalised Linear Models:

  • Two recent studies proposed to use generalized linear models (GLMs), where cellular sequencing depth was included as a covariate, as part of scRNA-seq preprocessing workflows.
  • The sctransform approach utilizes the Pearson residuals from negative binomial regression as input to standard dimensional reduction techniques, while GLM-PCA focuses on a generalized version of principal component analysis (PCA) for data with Poisson-distributed errors.
  • More broadly, multiple techniques aim to learn a latent state that captures biologically relevant cellular heterogeneity using either matrix factorization or neural networks, alongside a defined error model that describes the variation that is not captured by the latent space.

Parameterising statistical models:

  • Likelihood-based approaches require an explicit definition of a statistical error model for scRNA-seq, and there is little consensus on how to define or parameterize this model.
  • Multiple groups have utilized a Poisson error model but others argue that the data exhibit evidence of overdispersion, requiring the use of a negative-binomial (NB) distribution.
  • Methods that assume a NB distribution have different methods to parameterize their model.
    • A recent study argued that fixing the NB inverse overdispersion parameter θ to a single value is an appropriate estimate of technical overdispersion for all genes in all scRNA-seq datasets, while others propose learning unique parameter values for each gene in each dataset.
  • This lack of consensus is further exemplified by the scvi-tools suite, which supports nine different methods for parameterizing error models.
  • The purpose of this error model is to describe and quantify heterogeneity that is not captured by biologically relevant differences in cell state, and highlights a specific question: How can we model the observed variation in gene expression for an scRNA-seq experiment conducted on a biologically “homogeneous” population?

Seurat object

Import raw pbmc3k dataset from my server.

seurat_obj <- readRDS(url("https://davetang.org/file/pbmc3k_seurat.rds", "rb"))
seurat_obj
An object of class Seurat 
32738 features across 2700 samples within 1 assay 
Active assay: RNA (32738 features, 0 variable features)
 1 layer present: counts

Filter.

pbmc3k <- CreateSeuratObject(
  counts = seurat_obj@assays$RNA$counts,
  min.cells = 3,
  min.features = 200,
  project = "pbmc3k"
)
pbmc3k
An object of class Seurat 
13714 features across 2700 samples within 1 assay 
Active assay: RNA (13714 features, 0 variable features)
 1 layer present: counts

Seurat workflows

Process with the Seurat 4 workflow.

seurat_wf_v4 <- function(seurat_obj, scale_factor = 1e4, num_features = 2000, num_pcs = 30, cluster_res = 0.5, debug_flag = FALSE){
  
  seurat_obj <- NormalizeData(seurat_obj, normalization.method = "LogNormalize", scale.factor = scale_factor, verbose = debug_flag)
  seurat_obj <- FindVariableFeatures(seurat_obj, selection.method = 'vst', nfeatures = num_features, verbose = debug_flag)
  seurat_obj <- ScaleData(seurat_obj, verbose = debug_flag)
  seurat_obj <- RunPCA(seurat_obj, verbose = debug_flag)
  seurat_obj <- RunUMAP(seurat_obj, dims = 1:num_pcs, verbose = debug_flag)
  seurat_obj <- FindNeighbors(seurat_obj, dims = 1:num_pcs, verbose = debug_flag)
  seurat_obj <- FindClusters(seurat_obj, resolution = cluster_res, verbose = debug_flag)
  
  seurat_obj
}

pbmc3k_v4 <- seurat_wf_v4(pbmc3k)
Warning: The default method for RunUMAP has changed from calling Python UMAP via reticulate to the R-native UWOT using the cosine metric
To use Python UMAP via reticulate, set umap.method to 'umap-learn' and metric to 'correlation'
This message will be shown once per session
pbmc3k_v4
An object of class Seurat 
13714 features across 2700 samples within 1 assay 
Active assay: RNA (13714 features, 2000 variable features)
 3 layers present: counts, data, scale.data
 2 dimensional reductions calculated: pca, umap

UMAP.

DimPlot(pbmc3k_v4, reduction = "umap")

Version Author Date
0d51a69 Dave Tang 2025-03-10
seurat_wf_v5 <- function(seurat_obj, scale_factor = 1e4, num_features = 2000, num_pcs = 30, cluster_res = 0.5, debug_flag = FALSE){
  
  seurat_obj <- SCTransform(seurat_obj, verbose = debug_flag)
  seurat_obj <- RunPCA(seurat_obj, verbose = debug_flag)
  seurat_obj <- RunUMAP(seurat_obj, dims = 1:num_pcs, verbose = debug_flag)
  seurat_obj <- FindNeighbors(seurat_obj, dims = 1:num_pcs, verbose = debug_flag)
  seurat_obj <- FindClusters(seurat_obj, resolution = cluster_res, verbose = debug_flag)
  
  seurat_obj
}

pbmc3k_v5 <- seurat_wf_v5(pbmc3k)
pbmc3k_v5
An object of class Seurat 
26286 features across 2700 samples within 2 assays 
Active assay: SCT (12572 features, 3000 variable features)
 3 layers present: counts, data, scale.data
 1 other assay present: RNA
 2 dimensional reductions calculated: pca, umap

UMAP.

DimPlot(pbmc3k_v5, reduction = "umap")

Version Author Date
0d51a69 Dave Tang 2025-03-10

Data layer

Version 4 store log normalised data.

colSums(pbmc3k_v4@assays$RNA$data)[1:6]
AAACATACAACCAC-1 AAACATTGAGCTAC-1 AAACATTGATCAGC-1 AAACCGTGCTTCCG-1 
        1605.823         2027.859         2040.169         1902.960 
AAACCGTGTATGCG-1 AAACGCACTGGTAC-1 
        1388.125         1653.061 

The data layer is in the SCT assay.

colSums(pbmc3k_v5@assays$SCT$data)[1:6]
AAACATACAACCAC-1 AAACATTGAGCTAC-1 AAACATTGATCAGC-1 AAACCGTGCTTCCG-1 
        786.2686        1024.4731        1029.3032         934.4454 
AAACCGTGTATGCG-1 AAACGCACTGGTAC-1 
        666.1142         764.8101 

Compare clustering

More granular clustering of version 4’s cluster 0 in version 5.

stopifnot(all(row.names(pbmc3k_v4@meta.data) == row.names(pbmc3k_v5@meta.data)))

table(
  pbmc3k_v4@meta.data$seurat_clusters,
  pbmc3k_v5@meta.data$seurat_clusters
)
   
      0   1   2   3   4   5   6   7   8   9
  0 970   0  71   2   0   0 100  44   0   0
  1   0 479   0   0   0   9   0   0   3   0
  2   1   0   0 349   0   0   0   1   0   0
  3   4   0 290   1   5   0   0   1   0   0
  4   0   0   5   6 152   0   0   0   0   0
  5   0  16   0   0   0 145   0   0   0   0
  6   0   1   0   0   0   0   0   0  31   0
  7   0   1   0   1   0   0   0   0   0  12

sessionInfo()
R version 4.4.1 (2024-06-14)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 22.04.5 LTS

Matrix products: default
BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 
LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so;  LAPACK version 3.10.0

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

time zone: Etc/UTC
tzcode source: system (glibc)

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] Seurat_5.2.1       SeuratObject_5.0.2 sp_2.2-0           lubridate_1.9.4   
 [5] forcats_1.0.0      stringr_1.5.1      dplyr_1.1.4        purrr_1.0.4       
 [9] readr_2.1.5        tidyr_1.3.1        tibble_3.2.1       ggplot2_3.5.1     
[13] tidyverse_2.0.0    workflowr_1.7.1   

loaded via a namespace (and not attached):
  [1] RColorBrewer_1.1-3          rstudioapi_0.17.1          
  [3] jsonlite_1.9.1              magrittr_2.0.3             
  [5] spatstat.utils_3.1-2        farver_2.1.2               
  [7] rmarkdown_2.29              zlibbioc_1.52.0            
  [9] fs_1.6.5                    vctrs_0.6.5                
 [11] ROCR_1.0-11                 DelayedMatrixStats_1.28.1  
 [13] spatstat.explore_3.3-4      S4Arrays_1.6.0             
 [15] htmltools_0.5.8.1           SparseArray_1.6.2          
 [17] sass_0.4.9                  sctransform_0.4.1          
 [19] parallelly_1.42.0           KernSmooth_2.23-24         
 [21] bslib_0.9.0                 htmlwidgets_1.6.4          
 [23] ica_1.0-3                   plyr_1.8.9                 
 [25] plotly_4.10.4               zoo_1.8-13                 
 [27] cachem_1.1.0                whisker_0.4.1              
 [29] igraph_2.1.4                mime_0.12                  
 [31] lifecycle_1.0.4             pkgconfig_2.0.3            
 [33] Matrix_1.7-0                R6_2.6.1                   
 [35] fastmap_1.2.0               GenomeInfoDbData_1.2.13    
 [37] MatrixGenerics_1.18.1       fitdistrplus_1.2-2         
 [39] future_1.34.0               shiny_1.10.0               
 [41] digest_0.6.37               colorspace_2.1-1           
 [43] S4Vectors_0.44.0            patchwork_1.3.0            
 [45] ps_1.9.0                    rprojroot_2.0.4            
 [47] tensor_1.5                  RSpectra_0.16-2            
 [49] irlba_2.3.5.1               GenomicRanges_1.58.0       
 [51] labeling_0.4.3              progressr_0.15.1           
 [53] spatstat.sparse_3.1-0       timechange_0.3.0           
 [55] httr_1.4.7                  polyclip_1.10-7            
 [57] abind_1.4-8                 compiler_4.4.1             
 [59] withr_3.0.2                 fastDummies_1.7.5          
 [61] MASS_7.3-60.2               DelayedArray_0.32.0        
 [63] tools_4.4.1                 lmtest_0.9-40              
 [65] httpuv_1.6.15               future.apply_1.11.3        
 [67] goftest_1.2-3               glmGamPoi_1.18.0           
 [69] glue_1.8.0                  callr_3.7.6                
 [71] nlme_3.1-164                promises_1.3.2             
 [73] grid_4.4.1                  Rtsne_0.17                 
 [75] getPass_0.2-4               cluster_2.1.6              
 [77] reshape2_1.4.4              generics_0.1.3             
 [79] gtable_0.3.6                spatstat.data_3.1-4        
 [81] tzdb_0.4.0                  data.table_1.17.0          
 [83] hms_1.1.3                   XVector_0.46.0             
 [85] BiocGenerics_0.52.0         spatstat.geom_3.3-5        
 [87] RcppAnnoy_0.0.22            ggrepel_0.9.6              
 [89] RANN_2.6.2                  pillar_1.10.1              
 [91] spam_2.11-1                 RcppHNSW_0.6.0             
 [93] later_1.4.1                 splines_4.4.1              
 [95] lattice_0.22-6              survival_3.6-4             
 [97] deldir_2.0-4                tidyselect_1.2.1           
 [99] miniUI_0.1.1.1              pbapply_1.7-2              
[101] knitr_1.49                  git2r_0.35.0               
[103] gridExtra_2.3               IRanges_2.40.1             
[105] SummarizedExperiment_1.36.0 scattermore_1.2            
[107] stats4_4.4.1                xfun_0.51                  
[109] Biobase_2.66.0              matrixStats_1.5.0          
[111] UCSC.utils_1.2.0            stringi_1.8.4              
[113] lazyeval_0.2.2              yaml_2.3.10                
[115] evaluate_1.0.3              codetools_0.2-20           
[117] cli_3.6.4                   uwot_0.2.3                 
[119] xtable_1.8-4                reticulate_1.41.0          
[121] munsell_0.5.1               processx_3.8.6             
[123] jquerylib_0.1.4             GenomeInfoDb_1.42.3        
[125] Rcpp_1.0.14                 globals_0.16.3             
[127] spatstat.random_3.3-2       png_0.1-8                  
[129] spatstat.univar_3.1-2       parallel_4.4.1             
[131] dotCall64_1.2               sparseMatrixStats_1.18.0   
[133] listenv_0.9.1               viridisLite_0.4.2          
[135] scales_1.3.0                ggridges_0.5.6             
[137] crayon_1.5.3                rlang_1.1.5                
[139] cowplot_1.1.3