Last updated: 2018-08-31

workflowr checks: (Click a bullet for more information)
  • R Markdown file: up-to-date

    Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

  • Environment: empty

    Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

  • Seed: set.seed(20180807)

    The command set.seed(20180807) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

  • Session information: recorded

    Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

  • Repository version: 1310c93

    Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

    Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
    
    Ignored files:
        Ignored:    .DS_Store
        Ignored:    .Rhistory
        Ignored:    .Rproj.user/
        Ignored:    .vscode/
        Ignored:    code/.DS_Store
        Ignored:    data/raw/
        Ignored:    src/.DS_Store
        Ignored:    src/Rmd/.Rhistory
    
    Untracked files:
        Untracked:  Snakefile_clonality
        Untracked:  Snakefile_somatic_calling
        Untracked:  code/analysis_for_garx.Rmd
        Untracked:  code/selection/
        Untracked:  code/yuanhua/
        Untracked:  data/canopy/
        Untracked:  data/cell_assignment/
        Untracked:  data/de_analysis_FTv62/
        Untracked:  data/donor_info_070818.txt
        Untracked:  data/donor_info_core.csv
        Untracked:  data/donor_neutrality.tsv
        Untracked:  data/exome-point-mutations/
        Untracked:  data/fdr10.annot.txt.gz
        Untracked:  data/human_H_v5p2.rdata
        Untracked:  data/human_c2_v5p2.rdata
        Untracked:  data/human_c6_v5p2.rdata
        Untracked:  data/neg-bin-rsquared-petr.csv
        Untracked:  data/neutralitytestr-petr.tsv
        Untracked:  data/sce_merged_donors_cardelino_donorid_all_qc_filt.rds
        Untracked:  data/sce_merged_donors_cardelino_donorid_all_with_qc_labels.rds
        Untracked:  data/sce_merged_donors_cardelino_donorid_unstim_qc_filt.rds
        Untracked:  data/sces/
        Untracked:  data/selection/
        Untracked:  data/simulations/
        Untracked:  data/variance_components/
        Untracked:  figures/
        Untracked:  output/differential_expression/
        Untracked:  output/donor_specific/
        Untracked:  output/line_info.tsv
        Untracked:  output/nvars_by_category_by_donor.tsv
        Untracked:  output/nvars_by_category_by_line.tsv
        Untracked:  output/variance_components/
        Untracked:  references/
        Untracked:  tree.txt
    
    
    Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Expand here to see past versions:
    File Version Author Date Message
    html ca3438f davismcc 2018-08-29 Build site.
    html e573f2f davismcc 2018-08-27 Build site.
    html 7888ad3 davismcc 2018-08-26 Adding untracked html files
    Rmd 0590541 davismcc 2018-08-25 Adding selection models analysis from Daniel Kunz


Load libraries and data

knitr::opts_chunk$set(echo = TRUE)
library(ggplot2)
library(viridis)
library(ggrepel)
library(neutralitytestr)
library(cowplot)
library(plyr)
dir.create("figures/selection", showWarnings = FALSE, recursive = TRUE)

Load the call set and extract the allele frequencies which used for the fits of the selection models.

filteredAF = read.table("data/exome-point-mutations/high-vs-low-exomes.v62.ft.filt_lenient-alldonors.txt.gz", 
                        header = TRUE, stringsAsFactors = FALSE)

mut_list = data.frame("sampleID" = filteredAF$donor_short_id,
                      "af_fibro" = filteredAF$nALT_fibro/(filteredAF$nREF_fibro + filteredAF$nALT_fibro),
                      "af_ips" = filteredAF$nALT_ips/(filteredAF$nREF_ips + filteredAF$nALT_ips),
                      "chr" = filteredAF$chrom,
                      "pos" = filteredAF$pos,
                      "ref" = filteredAF$ref,
                      "mut" = filteredAF$alt,
                      "mutID" = paste(filteredAF$chrom, filteredAF$pos, filteredAF$ref, filteredAF$alt, sep = "_"))

mut_list = mut_list[order(mut_list$sampleID),]
write.table(mut_list, "data/selection/ips-fibro-AF.tsv", 
            row.names = FALSE, quote = FALSE, sep = "\t")

mut_list = data.frame("sampleID" = filteredAF$donor_short_id,
                      "af" = filteredAF$nALT_fibro/(filteredAF$nREF_fibro + filteredAF$nALT_fibro),
                      "chr" = filteredAF$chrom,
                      "pos" = filteredAF$pos,
                      "ref" = filteredAF$ref,
                      "mut" = filteredAF$alt)
mut_list = mut_list[order(mut_list$sampleID),]

write.table(mut_list, "data/selection/full-AF.tsv", row.names = FALSE, 
            quote = FALSE, sep = "\t")

dir.create("data/selection/AF", showWarnings = FALSE)

for (sampleID in unique(mut_list$sampleID)) {
  sub_mut_list = mut_list[mut_list$sampleID == sampleID,]
  sub_mut_list = sub_mut_list[sub_mut_list$af >= 0.03,]
  write.table(sub_mut_list, paste0("data/selection/AF/AF-", sampleID, ".tsv"),
              row.names = FALSE, quote = FALSE, sep = "\t")
}

Fit selection models

Please open the Mathematica notebook (code/selection/fit-dist.nb) and run it by hand (the outputs generated are used in subsequent cells). The notebook fits the negative binomial model for neutral evolution.

In case you do not have access to Mathematica to run the notebook, we provide its output files in data/selection/neg-bin-params-fit.csv and data/selection/neg-bin-rsquared-fit.csv.

The code below runs the neutralitytestr model.

fmin = 0.05
fmax = 0.45

petrAF = read.table("data/selection/full-AF.tsv", sep = "\t", header = T)
donors = unique(as.vector(petrAF$sampleID))

getSampleNtrtest <- function(afDF, sampleID, fmin, fmax){
  # run neutralitytestr on a single sample
  VAFsample = afDF[afDF$sampleID == sampleID, "af"]
  out = neutralitytest(VAFsample, fmin = fmin, fmax = fmax)
  results = c(sampleID,
              out$area$metric, out$area$pval,
              out$Dk$metric, out$Dk$pval,
              out$meanDist$metric, out$meanDist$pval,
              out$rsq$metric, out$rsq$pval,
              out$mutation.rate)
  names(results) = c("sampleID",
                     "area", "pval_area",
                     "Dk", "pval_Dk",
                     "meanDist", "pval_meanDist",
                     "rsq", "pval_rsq",
                     "mutrate")
  return(results)
}

ntrtestrPetrout = t(sapply(donors, 
                           function(sampleID) getSampleNtrtest(
                             petrAF, sampleID, fmin, fmax)))
write.table(ntrtestrPetrout, "data/selection/neutralitytestr.tsv", 
            sep = "\t", quote = FALSE, row.names = FALSE)

Plot selection classification

Plot the selection classification based on the goodness of fit results from neutrality testr and the negative binomial like fit.

ntrtestrPetr = read.table("data/selection/neutralitytestr.tsv", 
                          stringsAsFactors = FALSE, header = TRUE)

negbinfitPetr = read.table("data/selection/neg-bin-rsquared-fit.csv",
                           stringsAsFactors = FALSE, header = TRUE, sep = ",")
negbinfitPetr$sampleID = negbinfitPetr$fname
negbinfitPetr$sampleID = gsub("AF-", "", negbinfitPetr$sampleID)
negbinfitPetr$sampleID = gsub(".tsv", "", negbinfitPetr$sampleID)
rownames(negbinfitPetr) = negbinfitPetr$sampleID

dfrsq = data.frame(sampleID = ntrtestrPetr$sampleID,
                   rsq_ntrtestr = ntrtestrPetr$rsq,
                   rsq_negbinfit = negbinfitPetr[ntrtestrPetr$sampleID, "rsq"])

cutoff_selection_cummut = 0.85
cutoff_selection_negbin = 0.25
cutoff_neutral_cummut = 0.9
cutoff_neutral_negbin = 0.55


donors = c("euts", "fawm", "feec", "fikt", "garx", "gesg", "heja", "hipn", "ieki",
           "joxm", "kuco", "laey", "lexy", "naju", "nusw", "oaaz", "oilg", "pipw",
           "puie", "qayj", "qolg", "qonc", "rozh", "sehl", "ualf", "vass", "vils",
           "vuna", "wahn", "wetu", "xugn", "zoxy")

dfrsq = dfrsq[(dfrsq$sampleID %in% donors),]

dfrsq$candidatelabel = NA
dfrsq$candidatelabel[dfrsq$sampleID == "puie"] = "puie"

filter_selection = (dfrsq$rsq_ntrtestr < cutoff_selection_cummut) & (dfrsq$rsq_negbinfit < cutoff_selection_negbin)
filter_neutral = (dfrsq$rsq_ntrtestr > cutoff_neutral_cummut) & (dfrsq$rsq_negbinfit > cutoff_neutral_negbin)

dfrsq$selection = "undetermined"
dfrsq$selection[filter_selection] = "selected"
dfrsq$selection[filter_neutral] = "neutral"


plt_scatter = ggplot(dfrsq, aes(x = rsq_negbinfit, y = rsq_ntrtestr)) +
  scale_colour_manual(values = c("neutral" = "#007536", "selected" = "#5EF288",
                               "undetermined" = "#CCCCCC")) +
  geom_point(aes(colour = selection)) +
  geom_label_repel(aes(label = candidatelabel), color = "white",
                   size = 2.5,
                   fill = "black", box.padding = 0.35, point.padding = 0.5,
                   segment.color = 'grey50') +
  theme_bw() +
  theme(text = element_text(size = 9), axis.text = element_text(size = 8),
        axis.title = element_text(size = 9), 
        plot.title = element_text(size = 9, hjust = 0.5)) +
  labs(x = "Goodness of Fit - Negative Binomial Distribution", 
       y = "Goodness of Fit - Cumulative Mutations") +
  theme(strip.background = element_blank()) +
  labs(title = "") +
  theme(legend.justification = c(1,0), legend.position = c(1,0)) +
  theme(legend.background = element_rect(fill = "transparent", 
                                         colour = "transparent"), 
        legend.key.size = unit(0.25, "cm")) +
  labs(colour = "Selection")

plt_scatter

Expand here to see past versions of plot-prev-1.png:
Version Author Date
7888ad3 davismcc 2018-08-26

Visualise negative binomial model

Results from the negative binomial model for neutral evolution.

dfAFpetr = read.table("data/selection/full-AF.tsv", sep = "\t", 
                      stringsAsFactors = FALSE, header = TRUE)
dfAFpetr = dfAFpetr[dfAFpetr$sampleID %in% donors,]

fitparamspetr = read.csv("data/selection/neg-bin-params-fit.csv", 
                         stringsAsFactors = FALSE, header = TRUE)
fitparamspetr$sampleID = gsub("AF-", "", fitparamspetr$fname)
fitparamspetr$sampleID = gsub(".tsv", "", fitparamspetr$sampleID)

a = 1
b = 1
fun.1 <- function(x, a=1, b=1) 1/(a*x)*exp(-x/b)
args = list(mean = 2, sd = .5)

dd <- data.frame(
  predicted = rnorm(72, mean = 2, sd = 2),
  state = rep(c("A", "B", "C"), each = 24)
)

# save generate plotting points
grid = seq(0.01, 0.6, length = 500)

normaldens <- ddply(fitparamspetr, "sampleID", function(df) {
  data.frame(
    predicted = grid,
    density = fun.1(grid, df$a, df$b)
  )
})

normaldens = normaldens[normaldens$sampleID %in% donors,]

dfAFpetr$id = sapply(dfAFpetr$sampleID, 
                     function(sampleID) paste0(
                       sampleID, " (rsq ",
                       round(fitparamspetr$rsq[fitparamspetr$sampleID ==
                                                 sampleID],2),")"))
normaldens$id = sapply(normaldens$sampleID, 
                       function(sampleID) dfAFpetr$id[dfAFpetr$sampleID ==
                                                        sampleID][1])

plt_hist = ggplot(dfAFpetr, aes(x = af)) +
  geom_vline(xintercept = fmin, colour = "grey") +
  geom_vline(xintercept = fmax, colour = "grey") +
  geom_histogram(binwidth = (fmax - fmin)/40) +
  geom_line(aes(x = predicted, y = density), data = normaldens, colour = "red") +
  facet_wrap(~ id, scales = "free_y", ncol = 4) +
  theme_bw() +
  theme(text = element_text(size = 9), axis.text = element_text(size = 8), axis.title = element_text(size = 9), plot.title = element_text(size = 9, hjust = 0.5)) +
  labs(x = paste0("Allele Frequency"), y = "# Mutations") +
  theme(legend.position = "none") +
  labs(colour = "") +
  theme(strip.background = element_blank()) +
  labs(title = "")


pname = paste0("selection-neg-bin-fit")
ppath = paste0("figures/selection/", pname, ".pdf")
ggsave(ppath, plot = plt_hist, width = 17, height = 20, units  =  "cm")
ppath  =  paste0("figures/selection/", pname, ".png")
ggsave(ppath, plot = plt_hist, width = 17, height = 20, dpi = 300, units = "cm", limitsize = FALSE)
plt_hist

Expand here to see past versions of plot-neg-bin-fit-1.png:
Version Author Date
7888ad3 davismcc 2018-08-26

Visualise results from neutralitytestr

Results from the cumulative mutations model for neutral evolution.

dfntrtestr = read.table("data/selection/neutralitytestr.tsv", 
                        stringsAsFactors = FALSE, header = TRUE)

plotSampleCumMut <- function(afDF, dfntrtestr, sampleID, fmin, fmax) {
  # plot cummulative mutations as per Sottoriva & Graham
  afDFsample = afDF[afDF$sampleID == sampleID, ]
  rsq = dfntrtestr$rsq[dfntrtestr$sampleID == sampleID]
  # cumsum with decreasing frequency
  afDFsample = afDFsample[order(afDFsample$af, decreasing = TRUE), ]
  afDFsample$cumsum = 1:length(afDFsample$af)
  afDFsample$inverse_af = 1/afDFsample$af
  plt_cummut = ggplot(afDFsample, aes(x = inverse_af, y = cumsum)) +
    geom_vline(xintercept = c(1/fmin, 1/fmax), colour = "darkgrey") +
    geom_point(size = 0.5) +
    geom_line(data = subset(afDFsample, 
                            (inverse_af < 1/fmin) & (inverse_af > 1/fmax)),
              stat = "smooth", method = 'lm', formula = y ~ x, se = FALSE, 
              colour = "red", alpha = 0.5, size = 0.8) +
    coord_cartesian(xlim = c(0, 1/0.01)) +
    theme_bw() +
    theme(text = element_text(size = 9), axis.text = element_text(size = 8),
          axis.title = element_text(size = 9), 
          plot.title = element_text(size = 9, hjust = 0.5)) +
    labs(x = paste0("Inverse AF"), y = "# Cum Mut") +
    theme(legend.position = "none") +
    # remove unnecessary facet
    theme(strip.background = element_blank()) +
    labs(title = paste0(sampleID, " (rsq ", round(rsq,2), ")"))
  return(plt_cummut)
}


pltsCumMut = cowplot::plot_grid(
  plotSampleCumMut(dfAFpetr, dfntrtestr, donors[1], fmin, fmax),
  plotSampleCumMut(dfAFpetr, dfntrtestr, donors[2], fmin, fmax),
  plotSampleCumMut(dfAFpetr, dfntrtestr, donors[3], fmin, fmax),
  plotSampleCumMut(dfAFpetr, dfntrtestr, donors[4], fmin, fmax),
  plotSampleCumMut(dfAFpetr, dfntrtestr, donors[5], fmin, fmax),
  plotSampleCumMut(dfAFpetr, dfntrtestr, donors[6], fmin, fmax),
  plotSampleCumMut(dfAFpetr, dfntrtestr, donors[7], fmin, fmax),
  plotSampleCumMut(dfAFpetr, dfntrtestr, donors[8], fmin, fmax),
  plotSampleCumMut(dfAFpetr, dfntrtestr, donors[9], fmin, fmax),
  plotSampleCumMut(dfAFpetr, dfntrtestr, donors[10], fmin, fmax),
  plotSampleCumMut(dfAFpetr, dfntrtestr, donors[11], fmin, fmax),
  plotSampleCumMut(dfAFpetr, dfntrtestr, donors[12], fmin, fmax),
  plotSampleCumMut(dfAFpetr, dfntrtestr, donors[13], fmin, fmax),
  plotSampleCumMut(dfAFpetr, dfntrtestr, donors[14], fmin, fmax),
  plotSampleCumMut(dfAFpetr, dfntrtestr, donors[15], fmin, fmax),
  plotSampleCumMut(dfAFpetr, dfntrtestr, donors[16], fmin, fmax),
  plotSampleCumMut(dfAFpetr, dfntrtestr, donors[17], fmin, fmax),
  plotSampleCumMut(dfAFpetr, dfntrtestr, donors[18], fmin, fmax),
  plotSampleCumMut(dfAFpetr, dfntrtestr, donors[19], fmin, fmax),
  plotSampleCumMut(dfAFpetr, dfntrtestr, donors[20], fmin, fmax),
  plotSampleCumMut(dfAFpetr, dfntrtestr, donors[21], fmin, fmax),
  plotSampleCumMut(dfAFpetr, dfntrtestr, donors[22], fmin, fmax),
  plotSampleCumMut(dfAFpetr, dfntrtestr, donors[23], fmin, fmax),
  plotSampleCumMut(dfAFpetr, dfntrtestr, donors[24], fmin, fmax),
  plotSampleCumMut(dfAFpetr, dfntrtestr, donors[25], fmin, fmax),
  plotSampleCumMut(dfAFpetr, dfntrtestr, donors[26], fmin, fmax),
  plotSampleCumMut(dfAFpetr, dfntrtestr, donors[27], fmin, fmax),
  plotSampleCumMut(dfAFpetr, dfntrtestr, donors[28], fmin, fmax),
  plotSampleCumMut(dfAFpetr, dfntrtestr, donors[29], fmin, fmax),
  plotSampleCumMut(dfAFpetr, dfntrtestr, donors[30], fmin, fmax),
  plotSampleCumMut(dfAFpetr, dfntrtestr, donors[31], fmin, fmax),
  plotSampleCumMut(dfAFpetr, dfntrtestr, donors[32], fmin, fmax),
  ncol = 4)

pname = paste0("selection-neutralitytestr")
ppath = paste0("figures/selection/", pname, ".pdf")
ggsave(ppath, plot = pltsCumMut, width = 17, height = 25, units = "cm")
ppath = paste0("figures/selection/", pname, ".png")
ggsave(ppath, plot = pltsCumMut, width = 17, height = 25, dpi = 300, 
       units = "cm", limitsize = FALSE)
pltsCumMut

Expand here to see past versions of plot-neutralitytestr-1.png:
Version Author Date
7888ad3 davismcc 2018-08-26

Session information

devtools::session_info()
Session info -------------------------------------------------------------
 setting  value                       
 version  R version 3.5.1 (2018-07-02)
 system   x86_64, darwin15.6.0        
 ui       X11                         
 language (EN)                        
 collate  en_GB.UTF-8                 
 tz       Europe/London               
 date     2018-08-31                  
Packages -----------------------------------------------------------------
 package         * version date       source        
 assertthat        0.2.0   2017-04-11 CRAN (R 3.5.0)
 backports         1.1.2   2017-12-13 CRAN (R 3.5.0)
 base            * 3.5.1   2018-07-05 local         
 bindr             0.1.1   2018-03-13 CRAN (R 3.5.0)
 bindrcpp        * 0.2.2   2018-03-29 CRAN (R 3.5.0)
 colorspace        1.3-2   2016-12-14 CRAN (R 3.5.0)
 compiler          3.5.1   2018-07-05 local         
 cowplot         * 0.9.3   2018-07-15 CRAN (R 3.5.0)
 crayon            1.3.4   2017-09-16 CRAN (R 3.5.0)
 datasets        * 3.5.1   2018-07-05 local         
 devtools          1.13.6  2018-06-27 CRAN (R 3.5.0)
 digest            0.6.16  2018-08-22 CRAN (R 3.5.0)
 dplyr             0.7.6   2018-06-29 CRAN (R 3.5.1)
 evaluate          0.11    2018-07-17 CRAN (R 3.5.0)
 ggplot2         * 3.0.0   2018-07-03 CRAN (R 3.5.0)
 ggrepel         * 0.8.0   2018-05-09 CRAN (R 3.5.0)
 git2r             0.23.0  2018-07-17 CRAN (R 3.5.0)
 glue              1.3.0   2018-07-17 CRAN (R 3.5.0)
 graphics        * 3.5.1   2018-07-05 local         
 grDevices       * 3.5.1   2018-07-05 local         
 grid              3.5.1   2018-07-05 local         
 gridExtra         2.3     2017-09-09 CRAN (R 3.5.0)
 gtable            0.2.0   2016-02-26 CRAN (R 3.5.0)
 htmltools         0.3.6   2017-04-28 CRAN (R 3.5.0)
 knitr             1.20    2018-02-20 CRAN (R 3.5.0)
 labeling          0.3     2014-08-23 CRAN (R 3.5.0)
 lazyeval          0.2.1   2017-10-29 CRAN (R 3.5.0)
 magrittr          1.5     2014-11-22 CRAN (R 3.5.0)
 memoise           1.1.0   2017-04-21 CRAN (R 3.5.0)
 methods         * 3.5.1   2018-07-05 local         
 munsell           0.5.0   2018-06-12 CRAN (R 3.5.0)
 neutralitytestr * 0.0.2   2018-05-21 CRAN (R 3.5.0)
 pillar            1.3.0   2018-07-14 CRAN (R 3.5.0)
 pkgconfig         2.0.2   2018-08-16 CRAN (R 3.5.0)
 plyr            * 1.8.4   2016-06-08 CRAN (R 3.5.0)
 pracma            2.1.5   2018-08-25 CRAN (R 3.5.1)
 purrr             0.2.5   2018-05-29 CRAN (R 3.5.0)
 R.methodsS3       1.7.1   2016-02-16 CRAN (R 3.5.0)
 R.oo              1.22.0  2018-04-22 CRAN (R 3.5.0)
 R.utils           2.7.0   2018-08-27 CRAN (R 3.5.0)
 R6                2.2.2   2017-06-17 CRAN (R 3.5.0)
 Rcpp              0.12.18 2018-07-23 CRAN (R 3.5.0)
 rlang             0.2.2   2018-08-16 CRAN (R 3.5.0)
 rmarkdown         1.10    2018-06-11 CRAN (R 3.5.0)
 rprojroot         1.3-2   2018-01-03 CRAN (R 3.5.0)
 scales            1.0.0   2018-08-09 CRAN (R 3.5.0)
 stats           * 3.5.1   2018-07-05 local         
 stringi           1.2.4   2018-07-20 CRAN (R 3.5.0)
 stringr           1.3.1   2018-05-10 CRAN (R 3.5.0)
 tibble            1.4.2   2018-01-22 CRAN (R 3.5.0)
 tidyselect        0.2.4   2018-02-26 CRAN (R 3.5.0)
 tools             3.5.1   2018-07-05 local         
 utils           * 3.5.1   2018-07-05 local         
 viridis         * 0.5.1   2018-03-29 CRAN (R 3.5.0)
 viridisLite     * 0.3.0   2018-02-01 CRAN (R 3.5.0)
 whisker           0.3-2   2013-04-28 CRAN (R 3.5.0)
 withr             2.1.2   2018-03-15 CRAN (R 3.5.0)
 workflowr         1.1.1   2018-07-06 CRAN (R 3.5.0)
 yaml              2.2.0   2018-07-25 CRAN (R 3.5.1)

This reproducible R Markdown analysis was created with workflowr 1.1.1