Last updated: 2021-09-10

Checks: 7 0

Knit directory: hesc-epigenomics/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210202) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 8601f32. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/bed/
    Ignored:    data/bw/
    Ignored:    data/rnaseq/
    Ignored:    data_backup/
    Ignored:    figures_data/

Untracked files:
    Untracked:  Kumar_2021_hESC_data.zip
    Untracked:  analysis/sup_01_replicates.Rmd
    Untracked:  data/Lanner_lineagemarker_genes.csv
    Untracked:  data/Messmer_intermediate_down_top50.txt
    Untracked:  data/Messmer_intermediate_up_top50.txt
    Untracked:  data/meta/Kumar_2020_master_bins_10kb_table_final_raw.tsv
    Untracked:  data/meta/Kumar_2020_master_gene_table_rnaseq_shrunk_annotated.tsv
    Untracked:  output/

Unstaged changes:
    Modified:   .gitignore
    Modified:   analysis/fig_01_quantitative_chip.Rmd
    Modified:   analysis/master_bins_table.Rmd
    Modified:   analysis/master_gene_table.Rmd
    Modified:   analysis/rnaseq_comparison.Rmd
    Deleted:    data/README.md
    Deleted:    data/meta/Court_2017_gene_names_uniq.txt
    Deleted:    data/meta/Kumar_2020_master_gene_table_rnaseq_shrunk_annotated.zip
    Deleted:    data/meta/Kumar_2020_public_data_plus_layout.csv
    Deleted:    data/meta/biblio.bib
    Deleted:    data/meta/colors.R
    Deleted:    data/meta/style_info.csv
    Deleted:    data/other/Messmer_2019/Messmer_intermediate_down_top50.txt
    Deleted:    data/other/Messmer_2019/Messmer_intermediate_up_top50.txt

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/fig_04_intermediate.Rmd) and HTML (docs/fig_04_intermediate.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 8601f32 C. Navarro 2021-09-10 Fig 4 clean
html 2f9e4d5 C. Navarro 2021-07-08 Build site.
Rmd 29dc324 C. Navarro 2021-07-08 wflow_publish(“./analysis/fig_04_intermediate.Rmd”, verbose = T)

Summary

This is the supplementary notebook for figures 4 and 5.

Figure 4

RNA-seq EZH2i Naive and Primed

t <- rbind(genes %>% mutate(
   ezh2i = factor(case_when(
     RNASeq_DS_EZH2i_vs_Ni_padj < p_cutoff & RNASeq_DS_EZH2i_vs_Ni_log2FoldChange > fc_cutoff ~ "EZH2i up",
     RNASeq_DS_EZH2i_vs_Ni_padj < p_cutoff & RNASeq_DS_EZH2i_vs_Ni_log2FoldChange < -fc_cutoff ~ "EZH2i down",
     TRUE ~ "unchanged")
   )) %>% dplyr::count(ezh2i) %>% mutate(type = "Naive"),
  genes %>% mutate(
     ezh2i = factor(case_when(
       RNASeq_DS_EZH2i_vs_Pr_padj < p_cutoff & RNASeq_DS_EZH2i_vs_Pr_log2FoldChange > fc_cutoff ~ "EZH2i up",
       RNASeq_DS_EZH2i_vs_Pr_padj < p_cutoff & RNASeq_DS_EZH2i_vs_Pr_log2FoldChange < -fc_cutoff ~ "EZH2i down",
       TRUE ~ "unchanged")
     )) %>% dplyr::count(ezh2i) %>% mutate(type = "Primed"))

t$ezh2i <- factor(t$ezh2i, levels = c("EZH2i up", "unchanged", "EZH2i down"))
t$type <- factor(t$type, levels = c("Primed", "Naive"))

ggplot(t, aes(x=type, y=n, fill=ezh2i)) + 
  geom_bar(stat="identity", position = "fill", color = "black") +
  theme_default() +
  scale_fill_manual(values = c("#ff9027", "#eeeeee", "#00b9f2" )) +
  coord_flip() + labs(y = "Fraction of TSS", x = "All genes", title = "RNA-Seq: EZH2i in naive and primed")

t <- rbind(genes %>%  filter(court_bivalent == "Yes") %>% mutate(
   ezh2i = factor(case_when(
     RNASeq_DS_EZH2i_vs_Ni_padj < p_cutoff & RNASeq_DS_EZH2i_vs_Ni_log2FoldChange > fc_cutoff ~ "EZH2i up",
     RNASeq_DS_EZH2i_vs_Ni_padj < p_cutoff & RNASeq_DS_EZH2i_vs_Ni_log2FoldChange < -fc_cutoff ~ "EZH2i down",
     TRUE ~ "unchanged")
   )) %>% dplyr::count(ezh2i) %>% mutate(type = "Naive"),
  genes %>% filter(court_bivalent == "Yes") %>% mutate(
     ezh2i = factor(case_when(
       RNASeq_DS_EZH2i_vs_Pr_padj < p_cutoff & RNASeq_DS_EZH2i_vs_Pr_log2FoldChange > fc_cutoff ~ "EZH2i up",
       RNASeq_DS_EZH2i_vs_Pr_padj < p_cutoff & RNASeq_DS_EZH2i_vs_Pr_log2FoldChange < -fc_cutoff ~ "EZH2i down",
       TRUE ~ "unchanged")
     )) %>% dplyr::count(ezh2i) %>% mutate(type = "Primed"))

t$ezh2i <- factor(t$ezh2i, levels = c("EZH2i up", "unchanged", "EZH2i down"))
t$type <- factor(t$type, levels = c("Primed", "Naive"))

ggplot(t, aes(x=type, y=n, fill=ezh2i)) + 
  geom_bar(stat="identity", position = "fill", color = "black") +
  theme_default() +
  scale_fill_manual(values = c("#ff9027", "#eeeeee", "#00b9f2" )) +
  coord_flip() + labs(y = "Fraction of TSS", x = "Bivalent", title = "RNA-Seq: EZH2i in naive and primed")

PCA analysis

read_counts_file <- function(f, id_col = 1, count_col = 3, sample_suffix = "") {
  counts <- read.delim(file = f, header = TRUE)
  counts <- counts[, c(id_col, count_col:ncol(counts)), drop = FALSE]
  colnames(counts) <- gsub(sample_suffix, "", colnames(counts))
  colnames(counts) <- gsub(pattern = '\\.$', replacement = '', colnames(counts))
  counts
}

counts <-
  read_counts_file(file.path(
    params$rnaseqdir,
    "Kumar_2020",
    "rsem.merged.gene_counts.tsv"
  ))
rownames(counts) <- counts$gene_id
counts$gene_id <- NULL

samples.vec <- sort(colnames(counts))
groups <- sub("_[^_]+$", "", samples.vec)

counts  <- counts[, samples.vec, drop = FALSE]
coldata <- data.frame(row.names = colnames(counts), condition = groups)

dds <-
  DESeqDataSetFromMatrix(
    countData = round(counts),
    colData = coldata,
    design =  ~ condition
  )

dds <- DESeq(dds)

manual_colors <- scale_color_manual(values = c(
  Kumar_2020_Naive = gl_condition_colors[["Naive_Untreated"]],
  Kumar_2020_Naive_EZH2i = gl_condition_colors[["Naive_EZH2i"]],
  Kumar_2020_Primed = gl_condition_colors[["Primed_Untreated"]],
  Kumar_2020_Primed_EZH2i = gl_condition_colors[["Primed_EZH2i"]]
))

vst <- varianceStabilizingTransformation(dds)

plotPCA(vst, ntop=Inf, returnData = F) + 
  manual_colors + 
  theme_default() + 
  labs(title = "RNA-Seq PCA")

Version Author Date
2f9e4d5 C. Navarro 2021-07-08
df <- plotPCA(vst, ntop=Inf, returnData = T)

Download PCA data here.

Venn diagram counts

ni_ezh2i_up_rnaseq <- genes %>% filter(RNASeq_DS_EZH2i_vs_Ni_padj < p_cutoff & RNASeq_DS_EZH2i_vs_Ni_log2FoldChange > fc_cutoff)
pr_ezh2i_up_rnaseq <- genes %>% filter(RNASeq_DS_EZH2i_vs_Pr_padj < p_cutoff & RNASeq_DS_EZH2i_vs_Pr_log2FoldChange > fc_cutoff)

genes$class <- "None"

common <- intersect(ni_ezh2i_up_rnaseq$name, pr_ezh2i_up_rnaseq$name)
genes[genes$name %in% common, "class"] <- "Both_EZH2i_up"

genes[genes$name %in% setdiff(ni_ezh2i_up_rnaseq$name, common), "class"] <- "Ni_EZH2i_up"
genes[genes$name %in% setdiff(pr_ezh2i_up_rnaseq$name, common), "class"] <- "Pr_EZH2i_up"


class_tab <- table(dplyr::select(genes, "k27_bivalency_grp", "class"))

colSums(class_tab)
Both_EZH2i_up   Ni_EZH2i_up          None   Pr_EZH2i_up 
          169          1725         24243           349 
mean_cutoff_pr <- quantile(genes[["H3K27m3_Pr_mean_cov"]], 0.8)
mean_cutoff_ni <- quantile(genes[["H3K27m3_Ni_mean_cov"]], 0.8)

# genes$has_ni_k27 <- "No"
# genes[genes$H3K27m3_Ni_mean_cov > mean_cutoff_ni, "has_ni_k27"] <- "Yes"
# 
# genes$has_pr_k27 <- "No"
# genes[genes$H3K27m3_Pr_mean_cov > mean_cutoff_pr, "has_pr_k27"] <- "Yes"


genes$has_ni_k27 <- "No_K27_Ni"
genes[genes$H3K27m3_Ni_mean_cov > mean_cutoff_ni, "has_ni_k27"] <- "Yes_K27_Ni"

genes$has_pr_k27 <- "No_K27_Pr"
genes[genes$H3K27m3_Pr_mean_cov > mean_cutoff_pr, "has_pr_k27"] <- "Yes_K27_Pr"

dplyr::count(genes, has_ni_k27, has_pr_k27, class) %>% arrange(class)
   has_ni_k27 has_pr_k27         class     n
1   No_K27_Ni  No_K27_Pr Both_EZH2i_up    17
2   No_K27_Ni Yes_K27_Pr Both_EZH2i_up    41
3  Yes_K27_Ni  No_K27_Pr Both_EZH2i_up     5
4  Yes_K27_Ni Yes_K27_Pr Both_EZH2i_up   106
5   No_K27_Ni  No_K27_Pr   Ni_EZH2i_up   793
6   No_K27_Ni Yes_K27_Pr   Ni_EZH2i_up   273
7  Yes_K27_Ni  No_K27_Pr   Ni_EZH2i_up   233
8  Yes_K27_Ni Yes_K27_Pr   Ni_EZH2i_up   426
9   No_K27_Ni  No_K27_Pr          None 17709
10  No_K27_Ni Yes_K27_Pr          None  2195
11 Yes_K27_Ni  No_K27_Pr          None  2379
12 Yes_K27_Ni Yes_K27_Pr          None  1960
13  No_K27_Ni  No_K27_Pr   Pr_EZH2i_up    42
14  No_K27_Ni Yes_K27_Pr   Pr_EZH2i_up   121
15 Yes_K27_Ni  No_K27_Pr   Pr_EZH2i_up    11
16 Yes_K27_Ni Yes_K27_Pr   Pr_EZH2i_up   175

Expression of intermediate population genes

Top 50 up-regulated

genes_list <- read.table("./data/Messmer_intermediate_down_top50.txt",
                         header = F)
fig <- combined_heatmap(
  genes,
  genes_list[, 1],
  rnaseq_limits = c(0, 12.5),
  k4m3_limits = c(0, 80),
  k27m3_limits = c(0, 11),
  ub_limits = c(0, 11)
)
fig
orca(fig, "./output/fig5_messmer_intermediate_top_50_up_global_scale.svg", width = 9, height = 9, more_args = c('--disable-gpu'))

Top 50 down-regulated

genes_list <- read.table("./data/Messmer_intermediate_up_top50.txt",
                         header = F)
fig <- combined_heatmap(
  genes,
  genes_list[, 1],
  rnaseq_limits = c(0, 12.5),
  k4m3_limits = c(0, 80),
  k27m3_limits = c(0, 11),
  ub_limits = c(0, 11)
)
fig
orca(fig, "./output/fig4_messmer_intermediate_top_50_down_global_scale.svg", width = 9, height = 9, more_args = c('--disable-gpu'))

Figure 5

Expression of trophectoderm and placental-specific genes

genes_list <-
  c("EPAS1",
    "MSX2",
    "GATA3",
    "NR2F2",
    "CLDN4",
    "GATA2",
    "IGF2",
    "CDX2",
    "SLC40A1",
    "KRT7",
    "FRZB",
    "CGA",
    "ERP27",
    "KRT23",
    "CGB5",
    "VGLL1",
    "ENPEP",
    "TP63"
)
fig <- combined_heatmap(genes, genes_list, cluster_rows = F,
  rnaseq_limits = c(0, 12.5),
  k4m3_limits = c(0, 80),
  k27m3_limits = c(0, 12),
  ub_limits = c(0, 12))
fig
orca(fig, "./output/fig5_heatmap_lineage_specific_global_scale_new.svg", width = 9, height = 9, more_args = c('--disable-gpu'))

sessionInfo()
R version 4.1.1 (2021-08-10)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 20.04.3 LTS

Matrix products: default
BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/liblapack.so.3

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=sv_SE.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=sv_SE.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=sv_SE.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=sv_SE.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] parallel  stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] svglite_2.0.0               heatmaply_1.2.1            
 [3] viridis_0.6.1               viridisLite_0.4.0          
 [5] plotly_4.9.4.1              wigglescout_0.13.1         
 [7] cowplot_1.1.1               DESeq2_1.32.0              
 [9] SummarizedExperiment_1.22.0 Biobase_2.52.0             
[11] MatrixGenerics_1.4.0        matrixStats_0.60.1         
[13] ggrastr_0.2.3               forcats_0.5.1              
[15] stringr_1.4.0               dplyr_1.0.7                
[17] purrr_0.3.4                 readr_1.4.0                
[19] tidyr_1.1.3                 tibble_3.1.4               
[21] ggplot2_3.3.5               tidyverse_1.3.1            
[23] rtracklayer_1.52.0          GenomicRanges_1.44.0       
[25] GenomeInfoDb_1.28.1         IRanges_2.26.0             
[27] S4Vectors_0.30.0            BiocGenerics_0.38.0        
[29] workflowr_1.6.2            

loaded via a namespace (and not attached):
  [1] readxl_1.3.1             backports_1.2.1          systemfonts_1.0.2       
  [4] plyr_1.8.6               lazyeval_0.2.2           splines_4.1.1           
  [7] crosstalk_1.1.1          BiocParallel_1.26.0      listenv_0.8.0           
 [10] digest_0.6.27            foreach_1.5.1            htmltools_0.5.2         
 [13] fansi_0.5.0              magrittr_2.0.1           memoise_2.0.0           
 [16] globals_0.14.0           Biostrings_2.60.2        annotate_1.70.0         
 [19] modelr_0.1.8             askpass_1.1              colorspace_2.0-2        
 [22] blob_1.2.2               rvest_1.0.0              haven_2.4.1             
 [25] xfun_0.24                crayon_1.4.1             RCurl_1.98-1.4          
 [28] jsonlite_1.7.2           genefilter_1.74.0        iterators_1.0.13        
 [31] survival_3.2-13          glue_1.4.2               registry_0.5-1          
 [34] gtable_0.3.0             zlibbioc_1.38.0          XVector_0.32.0          
 [37] webshot_0.5.2            DelayedArray_0.18.0      scales_1.1.1            
 [40] DBI_1.1.1                Rcpp_1.0.7               xtable_1.8-4            
 [43] bit_4.0.4                htmlwidgets_1.5.3        httr_1.4.2              
 [46] RColorBrewer_1.1-2       ellipsis_0.3.2           farver_2.1.0            
 [49] pkgconfig_2.0.3          XML_3.99-0.7             sass_0.4.0              
 [52] dbplyr_2.1.1             locfit_1.5-9.4           utf8_1.2.2              
 [55] labeling_0.4.2           tidyselect_1.1.1         rlang_0.4.11            
 [58] reshape2_1.4.4           later_1.3.0              AnnotationDbi_1.54.1    
 [61] munsell_0.5.0            cellranger_1.1.0         tools_4.1.1             
 [64] cachem_1.0.6             cli_3.0.1                generics_0.1.0          
 [67] RSQLite_2.2.8            broom_0.7.8              evaluate_0.14           
 [70] fastmap_1.1.0            yaml_2.2.1               processx_3.5.2          
 [73] knitr_1.33               bit64_4.0.5              fs_1.5.0                
 [76] KEGGREST_1.32.0          dendextend_1.15.1        future_1.21.0           
 [79] whisker_0.4              xml2_1.3.2               compiler_4.1.1          
 [82] rstudioapi_0.13          beeswarm_0.4.0           png_0.1-7               
 [85] reprex_2.0.0             geneplotter_1.70.0       bslib_0.2.5.1           
 [88] stringi_1.7.4            ps_1.6.0                 highr_0.9               
 [91] lattice_0.20-44          Matrix_1.3-4             vctrs_0.3.8             
 [94] pillar_1.6.2             lifecycle_1.0.0          furrr_0.2.3             
 [97] jquerylib_0.1.4          data.table_1.14.0        bitops_1.0-7            
[100] seriation_1.3.0          httpuv_1.6.2             R6_2.5.1                
[103] BiocIO_1.2.0             TSP_1.1-10               promises_1.2.0.1        
[106] gridExtra_2.3            vipor_0.4.5              parallelly_1.26.1       
[109] codetools_0.2-18         assertthat_0.2.1         openssl_1.4.4           
[112] rprojroot_2.0.2          rjson_0.2.20             withr_2.4.2             
[115] GenomicAlignments_1.28.0 Rsamtools_2.8.0          GenomeInfoDbData_1.2.6  
[118] hms_1.1.0                grid_4.1.1               rmarkdown_2.9           
[121] git2r_0.28.0             lubridate_1.7.10         ggbeeswarm_0.6.0        
[124] restfulr_0.0.13