Last updated: 2022-02-04

Checks: 7 0

Knit directory: hesc-epigenomics/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210202) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 25484cd. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/fig_02_x_chromosome_extended.Rmd
    Ignored:    analysis/rnaseq_comparsion_extended.Rmd
    Ignored:    analysis/scRNAseq_downstream_extended.Rmd
    Ignored:    analysis/scRNAseq_downstream_traj_extended.Rmd
    Ignored:    data/bed/
    Ignored:    data/bw/
    Ignored:    data/rnaseq/
    Ignored:    data_backup/
    Ignored:    figures_data/

Untracked files:
    Untracked:  Kumar_2021_hESC_data.zip
    Untracked:  Rplot001.jpeg
    Untracked:  Rplot002.jpeg
    Untracked:  analysis/fig_05_microscopy.Rmd
    Untracked:  analysis/review_figures.Rmd
    Untracked:  code/211203_summary_figures_nfcore.R
    Untracked:  code/raw_scripts/Fig4d_fromSimon.zip
    Untracked:  code/raw_scripts/Fig4d_fromSimon/
    Untracked:  code/raw_scripts/fig3d_simon/
    Untracked:  data/Lanner_lineagemarker_genes.csv
    Untracked:  data/Messmer_intermediate_all_pval_05.txt
    Untracked:  data/Messmer_intermediate_down_top50.txt
    Untracked:  data/Messmer_intermediate_up_top50.txt
    Untracked:  data/meta/Kumar_2020_master_bins_10kb_table_final_raw.tsv
    Untracked:  data/meta/Kumar_2020_master_gene_table_rnaseq_shrunk_annotated.tsv
    Untracked:  data/microscopy/
    Untracked:  data/scrnaseq/
    Untracked:  excel_datasheets/
    Untracked:  output/

Unstaged changes:
    Modified:   .gitignore
    Modified:   analysis/fig_01_quantitative_chip.Rmd
    Modified:   analysis/fig_02_x_chromosome.Rmd
    Modified:   analysis/fig_03_h3k27m3_groups.Rmd
    Modified:   analysis/fig_04_intermediate.Rmd
    Modified:   analysis/index.Rmd
    Modified:   analysis/rnaseq_comparison.Rmd
    Modified:   code/heatmaply_functions.R
    Deleted:    data/README.md
    Deleted:    data/meta/Court_2017_gene_names_uniq.txt
    Deleted:    data/meta/Kumar_2020_master_gene_table_rnaseq_shrunk_annotated.zip
    Deleted:    data/meta/Kumar_2020_public_data_plus_layout.csv
    Deleted:    data/meta/biblio.bib
    Deleted:    data/meta/colors.R
    Deleted:    data/meta/style_info.csv
    Deleted:    data/other/Messmer_2019/Messmer_intermediate_down_top50.txt
    Deleted:    data/other/Messmer_2019/Messmer_intermediate_up_top50.txt

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/fig_01_genome_wide_marks_chr_x.Rmd) and HTML (docs/fig_01_genome_wide_marks_chr_x.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 25484cd C. Navarro 2022-02-04 Fig 1 and 2 fused panel

Summary

Supplementary code for panel 1 figures.

Helper functions

#' Calculate INRC from a mapped read counts table, and append such values
#' to it.
#'
#' @param counts Counts table. Corresponding file is provided as part of the 
#'   included metadata.
#' @param selector Counts column used. Final_mapped represents the final number
#'   of reads after deduplication and blacklisting.

#' @return A table including INRC and INRC norm to naive reference
calculate_inrc <- function(counts, selector = "final_mapped") {
  counts$condition <- paste(counts$celltype, counts$treatment, sep="_")
  
  inputs <- counts[counts$ip == "Input", c("library", selector)]
  colnames(inputs) <- c("library", "input_reads")
  
  non_inputs <- counts[counts$ip != "Input",]
  counts <- merge(non_inputs, inputs, by.x="input", by.y="library")
  counts$inrc <- counts[, selector] / counts[, "input_reads"]
  
  references <- counts[grepl("_Ni_pooled", counts$library), c("ip", "inrc")]
  colnames(references) <- c("ip", "ref_inrc")
  
  counts <- merge(counts, references, by="ip")
  counts$norm_to_naive <- counts$inrc / counts$ref_inrc
  
  id_vars <- c("ip", "treatment", "celltype", "condition", "replicate", "norm_to_naive")
  inrc <- counts[, c(id_vars)]
  
  inrc$condition <- factor(
    inrc$condition,
    levels = c(
      "Naive_Untreated",
      "Primed_Untreated",
      "Naive_EZH2i",
      "Primed_EZH2i"
    )
  )
  
  inrc
}

#' Barplot INRC pooled vs replicates per condition
#'
#' @param inrc Table with the INRC values
#' @param ip Which IP to plot
#' @param colors Corresponding colors
inrc_barplot <- function(inrc, ip, colors, font = 16) {
  inrc <- inrc[inrc$ip == ip, ]
  
  # So paired test takes right replicates
  inrc <- inrc[order(inrc$condition, inrc$replicate), ]
  
  max_v <- max(abs(inrc$norm_to_naive))
  
  aesthetics <- aes(x = .data[["condition"]],
                    y = .data[["norm_to_naive"]],
                    color = .data[["condition"]])
  
  my_comp <- list(c("Naive_Untreated", "Primed_Untreated"),
                  c("Naive_Untreated", "Naive_EZH2i"),
                  c("Primed_Untreated", "Primed_EZH2i"),
                  c("Naive_EZH2i", "Primed_EZH2i"))
  
  stats_method <- "t.test"
  
  ggplot(inrc[inrc$replicate != 'pooled',], aesthetics) +
    geom_point() +
    stat_compare_means(
      method = stats_method,
      paired = FALSE,
      comparisons = my_comp,
      label = "p.format"
    ) +
    geom_bar(
      data = inrc[inrc$replicate == 'pooled',],
      stat = 'identity',
      alpha = 0.6,
      aes(fill = condition)
    ) +
    scale_fill_manual(values = colors) +
    scale_color_manual(values = colors) +
    labs(
      x = "",
      y = 'INRC fraction vs Naïve',
      title = paste(ip, "MINUTE-ChIP"),
      caption = paste(stats_method, "signif. test, paired")
    ) +
    theme_classic(base_size = font) +
    theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
    ylim(0, 1.5)
}


#' Summarize stats per chromosome on a scaled bigWig file
#'
#' @param bwfile BigWig file to summarize
#' @param chromosomes Array of chromosome names to include.
#'
#' @return A data frame with stats per chromosome: mean, chr size, #reads
#'   (estimated as (score * chr size) / fraglen), %reads.
scaled_reads_per_chromosome <- function(bwfile, chromosomes, fraglen = 150) {
  granges <- unlist(summary(BigWigFile(bwfile)))
  df <- data.frame(granges[seqnames(granges) %in% chromosomes, ])
  rownames(df) <- df$seqnames
  
  # Calculate scaled number of reads as mean x chromosome length / read length
  df$nreads <- (df$score * df$width) / fraglen
  
  # Perc of total
  df$perc <- (df$nreads / sum(df$nreads)) * 100
  
  # Perc size
  df$size <- df$width / sum(df$width)

  df$group <- basename(bwfile)
  df[chromosomes, ]
}

chromosomes <- paste0("chr", c(1:22, "X"))

# Fix some parameters on treemap function to remove some clutter from nb.
chr_treeplot <- partial(
  treemap,
  index = "seqnames",
  vSize = "nreads",
  vColor = "score",
  type = "value",
  mapping = c(0, 3),
  range = c(0, 3),
  fontsize.labels = 16,
  fontsize.legend = 16,
  fontsize.title = 20
)


ridges_chromosome_plot <- function(values, column, color, main_seqs = chromosomes, scale = 1.7) {
  value_name <- column
  df <- values[values$seqnames %in% main_seqs, c("seqnames", value_name)]
  colnames(df) <- c("seqnames", "value")
  df$value <- as.numeric(df$value)
  df$seqnames <- factor(df$seqnames, levels = rev(main_seqs))

  df_summary <- df %>% group_by(seqnames) %>%
    summarise(value=median(value, na.rm = T))
  x_nudge <- quantile(df$value, 0.02, na.rm = T)

  ggplot(df, aes(x = value, y = seqnames, fill = seqnames)) +
    geom_density_ridges(
      rel_min_height = 0.001,
      scale = 1.7,
      calc_ecdf = TRUE,
      quantile_lines = TRUE, quantiles = 2,
    ) +
    theme_default(base_size = 12) +
    labs(y = "", x = "log2FC") +
    scale_fill_manual(values = c(color, rep("#bbbbbb", 22))) + theme(legend.position = "none") +
    geom_vline(xintercept = 0, linetype = "dashed", size = 0.2) +
    geom_text(data=df_summary,
              aes(label=sprintf("%1.2f", value)),
              position=position_nudge(y=0.35, x = x_nudge), colour="black", size=3)
}

get_long_format_heatmap_data <- function(df, mark) {
  columns <- grep("mean_cov", colnames(df), value = T)
  main_seqs <- paste0("chr", c(1:22, "X"))
  df <- df[df$seqnames %in% main_seqs, c("seqnames", columns)]
  
  summary_mat <- df %>% group_by(seqnames) %>% summarise_at(columns, mean, na.rm = TRUE)
  
  to_plot <- summary_mat %>% 
    select("seqnames", contains(mark) & contains("mean_cov") & !contains("rep"))
  
  # Reorder chromosomes and conditions
  conditions <- c("Ni", "Ni_EZH2i", "Pr", "Pr_EZH2i")
  to_plot$seqnames <- gsub("chr", "", to_plot$seqnames)
  to_plot$seqnames <- factor(to_plot$seqnames, levels = c(1:22, "X"))
  colnames(to_plot) <- c("seqnames", conditions)
  to_plot_melt <- pivot_longer(to_plot, !seqnames)
  to_plot_melt$name <- factor(to_plot_melt$name, levels = rev(conditions))
  to_plot_melt
}

colors_list <- c("Naive_EZH2i"="#82c5c6",
                 "Naive_Untreated"="#278b8b",
                 "Primed_EZH2i"="#f49797",
                 "Primed_Untreated"="#f44b34")

Data input

genes <- read.table("./data/meta/Kumar_2020_master_gene_table_rnaseq_shrunk_annotated.tsv",
  header = T, sep = "\t",
  colClasses = c(rep("character", 5), rep("factor", 3), rep("numeric", 86)))

bins <- read.table("./data/meta/Kumar_2020_master_bins_10kb_table_final_raw.tsv",
  header = T, sep = "\t",
  colClasses = c(rep("character", 5), rep("numeric", 112)))

counts_file <- file.path(params$datadir, "meta", "Kumar_2020_stats_summary.csv")
counts <- read.table(counts_file, sep="\t", header = T, na.strings = "NA", stringsAsFactors = F)

Global quantification

Read counts

H2AUb

inrc <- calculate_inrc(counts) 
inrc_barplot(inrc, "H2Aub", colors_list)

You can download data values here: download plot data.

H3K27m3

inrc_barplot(inrc, "H3K27m3", colors_list)

You can download data values here: download plot data.

H3K4m3

inrc_barplot(inrc, "H3K4m3", colors_list)

You can download data values here: download plot data.

ChromHMM

Here global average per ChromHMM categories are shown.

H3K27m3

labels <- gsub("_pooled.hg38.scaled.bw", "", basename(bwfiles$k27))
labels <- gsub("_H9", "", labels)

chromhmm <- params$chromhmm

plot_bw_loci_summary_heatmap(bwfiles$k27, chromhmm, labels = labels, remove_top=0.001)

You can download data values here: download plot data.

H3K4m3

labels <- gsub("_pooled.hg38.scaled.bw", "", basename(bwfiles$k4))
labels <- gsub("_H9", "", labels)

plot_bw_loci_summary_heatmap(bwfiles$k4, chromhmm, labels = labels, remove_top=0.001)

You can download data values here: download plot data.

H2AUb

labels <- gsub("_pooled.hg38.scaled.bw", "", basename(bwfiles$ub))
labels <- gsub("_H9", "", labels)

plot_bw_loci_summary_heatmap(bwfiles$ub, chromhmm, labels = labels, remove_top=0.001)

You can download data values here: download plot data.

Genome-wide 10kb bins

H3K27m3 Naïve vs Primed

points_color <- "#112233"
points_shape <- "."
raster_dpi <- 300

ggplot(bins, aes(x=log2(H3K27m3_Ni_mean_cov), y=log2(H3K27m3_Pr_mean_cov))) +
    rasterise(geom_point(size = 1, alpha = 0.2, color = points_color, shape = points_shape), dpi = raster_dpi) +
    geom_density2d(binwidth = 0.1) +
    geom_abline(slope = 1, linetype = "dashed") +
    theme_default() +
    labs(x = "Log2 H3K27m3 Naïve - FPGC",
         y = "Log2 H3K27m3 Primed - FPGC", title = "H3K27m3", subtitle = "10kb bins") + 
    coord_cartesian(xlim = c(-8, 8), ylim = c(-8, 8))

H2AUb Naïve vs Primed

ggplot(bins, aes(x=log2(H2Aub_Ni_mean_cov), y=log2(H2Aub_Pr_mean_cov))) +
    rasterise(geom_point(size = 1, alpha = 0.2, color = "#2f1547", shape = points_shape), dpi = raster_dpi) +
    geom_abline(slope = 1, linetype = "dashed") +
    geom_density2d(binwidth = 0.1) +
    theme_default() +
    labs(x = "Log2 H2Aub Naïve - FPGC",
         y = "Log2 H2Aub Primed - FPGC", title = "H2Aub", subtitle = "10kb bins") + 
    coord_cartesian(xlim = c(-8, 8), ylim = c(-8, 8))

H3K4m3 Naïve vs Primed

ggplot(bins, aes(x=log2(H3K4m3_Ni_mean_cov), y=log2(H3K4m3_Pr_mean_cov))) +
    rasterise(geom_point(size = 1, alpha = 0.2, color = "#614925", shape = points_shape), dpi = raster_dpi) +
    geom_abline(slope = 1, linetype = "dashed") +
    geom_density2d(binwidth = 0.1) +
    theme_default() +
    labs(x = "Log2 H3K4m3 Naïve - FPGC",
         y = "Log2 H3K4m3 Primed - FPGC", title = "H3K4m3", subtitle = "10kb bins") + 
    coord_cartesian(xlim = c(-8, 8), ylim = c(-8, 8))

Chromosome X

10kb bin per chromosome plot

columns <- grep("mean_cov", colnames(bins), value = T)
main_seqs <- paste0("chr", c(1:22, "X"))
df <- bins[bins$seqnames %in% main_seqs, c("seqnames", columns)]

summary_mat <- df %>% group_by(seqnames) %>% summarise_at(columns, mean, na.rm = TRUE)

to_plot <- summary_mat %>% select("seqnames", contains("mean_cov") & !contains("IN") & !contains("rep"))
# Reorder chromosomes
to_plot$seqnames <- gsub("chr", "", to_plot$seqnames)
to_plot$seqnames <- factor(to_plot$seqnames, levels = c(1:22, "X"))
to_plot_melt <- pivot_longer(to_plot, !seqnames)

to_plot_melt$name <- gsub("_mean_cov", "", to_plot_melt$name)
to_plot_melt$ip <- str_split_fixed(to_plot_melt$name, "_", 2)[, 1]
to_plot_melt$condition <- str_split_fixed(to_plot_melt$name, "_", 2)[, 2]

ggplot(to_plot_melt, aes(color = ip, x = condition, y = value, label = seqnames)) +
  geom_boxplot(color = "gray", alpha = 0.9) +
  geom_jitter(position = "dodge") +
  geom_jitter(data = to_plot_melt %>% filter(seqnames == "X"), color = "black", size = 3.5, position = "dodge") +
  geom_label_repel(data = to_plot_melt %>% filter(
    seqnames == "X" & ip == "H3K27m3" & condition == "Ni"), color = "black", box.padding = 1.5) +
  theme_default(base_size=12) + 
  facet_wrap(. ~ ip, nrow = 1) +
  geom_hline(yintercept = 1, linetype = "dashed", alpha = 0.8) +
  scale_color_manual(
    values = c("H2Aub" = gl_mark_colors$H2Aub,
               "H3K27m3" = gl_mark_colors$H3K27m3,
               "H3K4m3" = gl_mark_colors$H3K4m3)) +
  labs(y="FPGC", title =
         "Mean 10kb bin RPGC per chromosome and histone mark",
       subtitle = "Chromosome X in black")

Whole chromosome-view of histone marks autosome vs chromosome X

These figures are made using the package karyoploteR: https://academic.oup.com/bioinformatics/article/33/19/3088/3857734

H3K27m3

kp <-
  plotKaryotype(
    genome = "hg38",
    plot.type = 1,
    main = "H3K27m3 Naïve vs Primed",
    chromosomes = c("chr7", "chrX")
  )

d1 <- kpPlotDensity(
  kp,
  rtracklayer::import(bwfiles$k27[[1]]),
  data.panel = 1,
  col = "#092ba8",
  chromosomes = c("chr7", "chrX"),
  window.size = 500000
)

d2 <- kpPlotDensity(
  kp,
  rtracklayer::import(bwfiles$k27[[3]]),
  data.panel = 2,
  col =
    "#5d9ddd",
  chromosomes = c("chr7", "chrX"),
  window.size = 500000
)

# Store these values on a table
df1 <- cbind(data.frame(d1$latest.plot$computed.values$windows, d1$latest.plot$computed.values$density))
df2 <- cbind(data.frame(d2$latest.plot$computed.values$windows, d2$latest.plot$computed.values$density))
df_karyo <- left_join(df1, df2)
colnames(df_karyo) <- c("seqnames", "start", "end", "width", "strand", "H3K27m3_Pr", "H3K27m3_Ni")
final_df <- df_karyo

H3K4m3

kp <-
  plotKaryotype(
    genome = "hg38",
    plot.type = 1,
    main = "H3K4m3 Naïve vs Primed",
    chromosomes = c("chr7", "chrX")
  )

d1 <- kpPlotDensity(
  kp,
  rtracklayer::import(bwfiles$k4[[3]]),
  data.panel = 2,
  col =
    "#ffab45",
  chromosomes = c("chr7", "chrX"),
  window.size = 500000
)

d2 <- kpPlotDensity(
  kp,
  rtracklayer::import(bwfiles$k4[[1]]),
  data.panel = 1,
  col = "#e76e3b",
  chromosomes = c("chr7", "chrX"),
  window.size = 500000
)

# Store these values on a table
df1 <- cbind(data.frame(d1$latest.plot$computed.values$windows, d1$latest.plot$computed.values$density))
df2 <- cbind(data.frame(d2$latest.plot$computed.values$windows, d2$latest.plot$computed.values$density))
df_karyo <- left_join(df1, df2)
colnames(df_karyo) <- c("seqnames", "start", "end", "width", "strand", "H3K4m3_Pr", "H3K4m3_Ni")
final_df <- left_join(final_df, df_karyo)

H2Aub

kp <-
  plotKaryotype(
    genome = "hg38",
    plot.type = 1,
    main = "H2Aub Naïve vs Primed",
    chromosomes = c("chr7", "chrX")
  )

d1 <- kpPlotDensity(
  kp,
  rtracklayer::import(bwfiles$ub[[1]]),
  data.panel = 1,
  col = "#400c84",
  chromosomes = c("chr7", "chrX"),
  window.size = 500000
)

d2 <- kpPlotDensity(
  kp,
  rtracklayer::import(bwfiles$ub[[3]]),
  data.panel = 2,
  col =
    "#a07af0",
  chromosomes = c("chr7", "chrX"),
  window.size = 500000
)

# Store these values on a table
df1 <- cbind(data.frame(d1$latest.plot$computed.values$windows, d1$latest.plot$computed.values$density))
df2 <- cbind(data.frame(d2$latest.plot$computed.values$windows, d2$latest.plot$computed.values$density))
df_karyo <- left_join(df1, df2)
colnames(df_karyo) <- c("seqnames", "start", "end", "width", "strand", "H2Aub_Pr", "H2Aub_Ni")
final_df <- left_join(final_df, df_karyo)

H3K27m3 naïve per chromosome treemap

H3K27me3 is highly abundant on X chromosome on naïve cells.

If we take a look at coverage per chromosome for both Naïve and Primed cells:

values <- scaled_reads_per_chromosome(bwfiles$k27[[1]], chromosomes = chromosomes)

chr_treeplot(
  values,
  palette = c("#ffffff", gl_condition_colors[["Naive_Untreated"]]),
  fontcolor.labels = "#555555",
  border.col = c("white"),
  title = "H3K27m3 - Naïve"
)

Values can be downloaded here: download plot data.

In this and subsequent plots, each rectangle’s size is proportional to the number of reads mapped to its corresponding chromosome. Color intensity represents mean coverage per chromosome, and rectangles are ordered according to size. Top-left is the highest value.

Per chromosome distribution of logFC values

These figures are made using the package ggridges: https://wilkelab.org/ggridges/

Primed vs Naive RNA-seq

ridges_chromosome_plot(genes, "RNASeq_DS_Pr_vs_Ni_log2FoldChange", "#F08080") +
  labs(title = "RNA Seq log2FC distribution Primed vs Naïve DESeq2") +
  coord_cartesian(xlim=c(-7, 7))

Values used in this plot.

Primed vs Naive H3K27m3

ridges_chromosome_plot(genes, "H3K27m3_DS_Pr_vs_Ni_log2FoldChange", "#3e5aa8") +
  labs(title = "H3K27m3 Primed vs Naïve DESeq2") + coord_cartesian(xlim=c(-7, 7))

Values used in this plot.

EZH2i vs Naive RNA-seq data

ridges_chromosome_plot(genes, "RNASeq_DS_EZH2i_vs_Ni_log2FoldChange", "#F08080") +
  labs(title = "RNA Seq EZH2i vs Naïve DESeq2") +
  coord_cartesian(xlim=c(-5, 5))

Values used in this plot.


sessionInfo()
R version 4.1.2 (2021-11-01)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 20.04.3 LTS

Matrix products: default
BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/liblapack.so.3

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=sv_SE.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=sv_SE.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=sv_SE.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=sv_SE.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats4    stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
 [1] svglite_2.0.0        scales_1.1.1         ggrepel_0.9.1       
 [4] rtracklayer_1.54.0   cowplot_1.1.1        karyoploteR_1.20.0  
 [7] regioneR_1.26.0      GenomicRanges_1.46.0 GenomeInfoDb_1.30.0 
[10] IRanges_2.28.0       S4Vectors_0.32.2     BiocGenerics_0.40.0 
[13] ggridges_0.5.3       treemap_2.4-3        knitr_1.36          
[16] ggrastr_0.2.3        ggpubr_0.4.0         wigglescout_0.13.5  
[19] forcats_0.5.1        stringr_1.4.0        dplyr_1.0.7         
[22] purrr_0.3.4          readr_2.1.0          tidyr_1.1.4         
[25] tibble_3.1.6         tidyverse_1.3.1      ggplot2_3.3.5       
[28] workflowr_1.6.2     

loaded via a namespace (and not attached):
  [1] utf8_1.2.2                  tidyselect_1.1.1           
  [3] RSQLite_2.2.8               AnnotationDbi_1.56.2       
  [5] htmlwidgets_1.5.4           grid_4.1.2                 
  [7] BiocParallel_1.28.0         munsell_0.5.0              
  [9] codetools_0.2-18            future_1.23.0              
 [11] withr_2.4.2                 colorspace_2.0-2           
 [13] Biobase_2.54.0              filelock_1.0.2             
 [15] highr_0.9                   rstudioapi_0.13            
 [17] ggsignif_0.6.3              listenv_0.8.0              
 [19] labeling_0.4.2              MatrixGenerics_1.6.0       
 [21] git2r_0.28.0                GenomeInfoDbData_1.2.7     
 [23] farver_2.1.0                bit64_4.0.5                
 [25] rprojroot_2.0.2             parallelly_1.28.1          
 [27] vctrs_0.3.8                 generics_0.1.1             
 [29] xfun_0.28                   biovizBase_1.42.0          
 [31] BiocFileCache_2.2.0         R6_2.5.1                   
 [33] ggbeeswarm_0.6.0            isoband_0.2.5              
 [35] AnnotationFilter_1.18.0     bitops_1.0-7               
 [37] cachem_1.0.6                DelayedArray_0.20.0        
 [39] assertthat_0.2.1            promises_1.2.0.1           
 [41] BiocIO_1.4.0                nnet_7.3-16                
 [43] beeswarm_0.4.0              gtable_0.3.0               
 [45] Cairo_1.5-12.2              globals_0.14.0             
 [47] ensembldb_2.18.2            rlang_0.4.12               
 [49] systemfonts_1.0.3           splines_4.1.2              
 [51] rstatix_0.7.0               lazyeval_0.2.2             
 [53] dichromat_2.0-0             broom_0.7.10               
 [55] checkmate_2.0.0             yaml_2.2.1                 
 [57] reshape2_1.4.4              abind_1.4-5                
 [59] modelr_0.1.8                GenomicFeatures_1.46.1     
 [61] backports_1.3.0             httpuv_1.6.3               
 [63] Hmisc_4.6-0                 tools_4.1.2                
 [65] gridBase_0.4-7              ellipsis_0.3.2             
 [67] jquerylib_0.1.4             RColorBrewer_1.1-2         
 [69] Rcpp_1.0.7                  plyr_1.8.6                 
 [71] base64enc_0.1-3             progress_1.2.2             
 [73] zlibbioc_1.40.0             RCurl_1.98-1.5             
 [75] prettyunits_1.1.1           openssl_1.4.5              
 [77] rpart_4.1-15                SummarizedExperiment_1.24.0
 [79] haven_2.4.3                 cluster_2.1.2              
 [81] fs_1.5.0                    furrr_0.2.3                
 [83] magrittr_2.0.1              data.table_1.14.2          
 [85] reprex_2.0.1                whisker_0.4                
 [87] ProtGenerics_1.26.0         matrixStats_0.61.0         
 [89] hms_1.1.1                   mime_0.12                  
 [91] evaluate_0.14               xtable_1.8-4               
 [93] XML_3.99-0.8                jpeg_0.1-9                 
 [95] readxl_1.3.1                gridExtra_2.3              
 [97] compiler_4.1.2              biomaRt_2.50.0             
 [99] crayon_1.4.2                htmltools_0.5.2            
[101] later_1.3.0                 tzdb_0.2.0                 
[103] Formula_1.2-4               lubridate_1.8.0            
[105] DBI_1.1.1                   dbplyr_2.1.1               
[107] MASS_7.3-54                 rappdirs_0.3.3             
[109] Matrix_1.4-0                car_3.0-12                 
[111] cli_3.1.0                   parallel_4.1.2             
[113] igraph_1.2.8                pkgconfig_2.0.3            
[115] GenomicAlignments_1.30.0    foreign_0.8-81             
[117] xml2_1.3.2                  vipor_0.4.5                
[119] bslib_0.3.1                 XVector_0.34.0             
[121] rvest_1.0.2                 bezier_1.1.2               
[123] VariantAnnotation_1.40.0    digest_0.6.28              
[125] Biostrings_2.62.0           rmarkdown_2.11             
[127] cellranger_1.1.0            htmlTable_2.3.0            
[129] restfulr_0.0.13             curl_4.3.2                 
[131] shiny_1.7.1                 Rsamtools_2.10.0           
[133] rjson_0.2.20                lifecycle_1.0.1            
[135] jsonlite_1.7.2              carData_3.0-4              
[137] askpass_1.1                 BSgenome_1.62.0            
[139] fansi_0.5.0                 pillar_1.6.4               
[141] lattice_0.20-45             KEGGREST_1.34.0            
[143] fastmap_1.1.0               httr_1.4.2                 
[145] survival_3.2-13             glue_1.5.1                 
[147] bamsignals_1.26.0           png_0.1-7                  
[149] bit_4.0.4                   stringi_1.7.6              
[151] sass_0.4.0                  blob_1.2.2                 
[153] latticeExtra_0.6-29         memoise_2.0.0