Last updated: 2020-07-01

Checks: 7 0

Knit directory: mr_mash_test/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20200328) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 29d5be5. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .sos/
    Ignored:    code/fit_mr_mash.66662433.err
    Ignored:    code/fit_mr_mash.66662433.out
    Ignored:    dsc/.sos/
    Ignored:    dsc/outfiles/
    Ignored:    output/dsc.html
    Ignored:    output/dsc/
    Ignored:    output/dsc_05_18_20.html
    Ignored:    output/dsc_05_18_20/
    Ignored:    output/dsc_05_29_20.html
    Ignored:    output/dsc_05_29_20/
    Ignored:    output/dsc_OLD.html
    Ignored:    output/dsc_OLD/
    Ignored:    output/dsc_test.html
    Ignored:    output/dsc_test/
    Ignored:    output/test_dense_issue.rds
    Ignored:    output/test_sparse_issue.rds

Untracked files:
    Untracked:  analysis/dense_issue_investigation2/
    Untracked:  code/plot_test.R

Unstaged changes:
    Modified:   dsc/midway2.yml

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/mash_vs_mrmash.Rmd) and HTML (docs/mash_vs_mrmash.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 29d5be5 fmorgante 2020-07-01 Add mash vs mr.mash comparison

library(mr.mash.alpha)
library(glmnet)

options(stringsAsFactors = FALSE)

expand_cov <- function(mats, grid, zeromat=TRUE){
  mats <- lapply(mats, normalize_cov)
  U <- list()
  nms <- vector("character")
  t <- 0
  for(i in 1:length(grid)){
    for(j in 1:length(mats)){
      t <- t+1
      U[[t]] <- mats[[j]]*grid[i]
      nms[t] <- paste0(names(mats)[j], "_grid", i) 
    }
  }
  
  if(zeromat){
    zero_mat <- list(matrix(0, r, r))
    U <- c(zero_mat, U)
    nms <- c("null", nms)
  }
  
  names(U) <- nms
  
  return(U)
}
normalize_cov <- function(U){
  if(max(diag(U))!=0){
    U = U/max(diag(U))
  }
  return(U)
}

nreps <- 10

Shared effects among all responses.

We want to investigate the similarities and differences of mash and mr.mash. We perform 10 simulations with n=600, p=1,000, p_causal=50, r=4, r_causal=4, PVE=0.5, shared effects (with variance 1), independent predictors (with variance 1), and independent residuals. In mr.mash, we are going to fix V to be diagonal estimated from the group-lasso solution. In mash, we are going to leave it as the default value. The prior is built using the canonical covariance matrices scaled by a grid computed from the summary statistics. In this scenario, we expect the two methods to perform pretty similarly.

full_res_shared <- vector("list", nreps)
group_comparisons_shared <- vector("list", nreps)

###Set parameters
n <- 600
p <- 1000
p_causal <- 50
r <- 4
r_causal <- list(1:4)

set.seed(1)

for(rep_i in 1:nreps){
  ###Simulate V, B, X and Y
  out <- simulate_mr_mash_data(n, p, p_causal, r, r_causal, intercepts = rep(1, r),
                               pve=0.5, B_cor=1, B_scale=1, X_cor=0, X_scale=1, V_cor=0)
  colnames(out$Y) <- paste0("Y", seq(1, r))
  rownames(out$Y) <- paste0("N", seq(1, n))
  colnames(out$X) <- paste0("X", seq(1, p))
  rownames(out$X) <- paste0("N", seq(1, n))
  
  ###Get the data
  Y <- out$Y
  X <- out$X
  
  ###Compute grid of variances
  univ_sumstats <- compute_univariate_sumstats(X, Y, standardize=FALSE, standardize.response=FALSE)
  grid <- autoselect.mixsd(univ_sumstats, mult=sqrt(2))^2
  
  ###Compute prior with only canonical matrices
  S0_can <- compute_canonical_covs(ncol(Y), singletons=TRUE, hetgrid=c(0, 0.25, 0.5, 0.75, 1))
  S0 <- expand_cov(S0_can, grid, zeromat=TRUE)
  
  ###Fit grop-lasso to initialize mr.mash
  cvfit_glmnet <- cv.glmnet(x=X, y=Y, family="mgaussian", alpha=1, standardize=FALSE)
  coeff_glmnet <- coef(cvfit_glmnet, s="lambda.min")
  Bhat_glmnet <- matrix(as.numeric(NA), nrow=p, ncol=r)
  for(i in 1:length(coeff_glmnet)){
    Bhat_glmnet[, i] <- as.vector(coeff_glmnet[[i]])[-1]
  }
  prop_nonzero_glmnet <- sum(Bhat_glmnet[, 1]!=0)/p
  
  ###Fit mr.mash
  w0 <- c((1-prop_nonzero_glmnet), rep(prop_nonzero_glmnet/(length(S0)-1), (length(S0)-1)))
  
  ##V diagonal fixed
  fit_mrmash_fixVdiag <- mr.mash(X, Y, S0, w0=w0, update_w0=TRUE, update_w0_method="EM", tol=1e-2,
                                 convergence_criterion="ELBO", compute_ELBO=TRUE, standardize=FALSE, 
                                 verbose=FALSE, update_V=FALSE, update_V_method="diagonal", e=1e-8,
                                 mu1_init=Bhat_glmnet, w0_threshold=0)
  
  ###Fit mash
  data <- mashr::mash_set_data(univ_sumstats$Bhat, univ_sumstats$Shat)
  m.c <- mashr::mash(data, S0_can, grid=sqrt(grid))
  
  ###Comparisons of groups of effects
  singletons_ind <- grep("singleton", names(fit_mrmash_fixVdiag$w0), fixed=TRUE)
  independent_ind <- grep("independent", names(fit_mrmash_fixVdiag$w0), fixed=TRUE)
  shared025_ind <- grep("shared0.25", names(fit_mrmash_fixVdiag$w0), fixed=TRUE)
  shared05_ind <- grep("shared0.5", names(fit_mrmash_fixVdiag$w0), fixed=TRUE)
  shared075_ind <- grep("shared0.75", names(fit_mrmash_fixVdiag$w0), fixed=TRUE)
  shared1_ind <- grep("shared1", names(fit_mrmash_fixVdiag$w0), fixed=TRUE)
  
  dat <- cbind(mash=mashr::get_estimated_pi(m.c, dimension="all"), mrmash=fit_mrmash_fixVdiag$w0)
  
  null <- dat[1, ]
  singletons <- colSums(dat[singletons_ind, ])
  independent <- colSums(dat[independent_ind, ])
  shared025 <- colSums(dat[shared025_ind, ])
  shared05 <- colSums(dat[shared05_ind, ])
  shared075 <- colSums(dat[shared075_ind, ])
  shared1 <- colSums(dat[shared1_ind, ])
  
  all_effects_comparison <- rbind(null, singletons, independent, shared025, shared05, shared075, shared1)
  
  ###Store the results
  full_res_shared[[rep_i]] <- list(grid=grid, mash=mashr::get_estimated_pi(m.c, dimension="all"), mrmash=fit_mrmash_fixVdiag$w0)
  group_comparisons_shared[[rep_i]] <- all_effects_comparison
}
group_comparisons_shared
[[1]]
                 mash      mrmash
null        0.3203207 0.847288006
singletons  0.0000000 0.061298544
independent 0.0000000 0.016330294
shared025   0.0000000 0.008036514
shared05    0.0000000 0.005098362
shared075   0.0000000 0.003941879
shared1     0.6796793 0.058006401

[[2]]
                 mash      mrmash
null        0.2572289 0.922606349
singletons  0.0000000 0.017194090
independent 0.0000000 0.002717724
shared025   0.0000000 0.002539932
shared05    0.0000000 0.002407017
shared075   0.0000000 0.002368227
shared1     0.7427711 0.050166661

[[3]]
                 mash      mrmash
null        0.3378258 0.873236721
singletons  0.0000000 0.044649670
independent 0.0000000 0.018078807
shared025   0.0000000 0.006592893
shared05    0.0000000 0.004672244
shared075   0.0000000 0.003791388
shared1     0.6621742 0.048978276

[[4]]
                 mash      mrmash
null        0.4046104 0.906739011
singletons  0.0000000 0.028501028
independent 0.0000000 0.005621662
shared025   0.0000000 0.005010965
shared05    0.0000000 0.004578317
shared075   0.0000000 0.004349040
shared1     0.5953896 0.045199977

[[5]]
                 mash      mrmash
null        0.3018341 0.880891633
singletons  0.0000000 0.044027095
independent 0.0000000 0.010383494
shared025   0.0000000 0.006298904
shared05    0.0000000 0.004694742
shared075   0.0000000 0.003832044
shared1     0.6981659 0.049872088

[[6]]
                 mash      mrmash
null        0.3373425 0.782871694
singletons  0.0000000 0.097994362
independent 0.0000000 0.059053279
shared025   0.0000000 0.010218952
shared05    0.0000000 0.005557823
shared075   0.0000000 0.003964605
shared1     0.6626575 0.040339285

[[7]]
                mash      mrmash
null        0.309217 0.854329405
singletons  0.000000 0.050048131
independent 0.000000 0.014290657
shared025   0.000000 0.008001796
shared05    0.000000 0.006456471
shared075   0.000000 0.010226956
shared1     0.690783 0.056646584

[[8]]
                 mash      mrmash
null        0.2859918 0.895000474
singletons  0.0000000 0.031510463
independent 0.0000000 0.004925320
shared025   0.0000000 0.004696887
shared05    0.0000000 0.004603444
shared075   0.0000000 0.004984347
shared1     0.7140082 0.054279065

[[9]]
                 mash      mrmash
null        0.3262577 0.935774421
singletons  0.0000000 0.014894461
independent 0.0000000 0.002687344
shared025   0.0000000 0.002538386
shared05    0.0000000 0.002396007
shared075   0.0000000 0.002263794
shared1     0.6737423 0.039445586

[[10]]
                 mash      mrmash
null        0.3724092 0.850286737
singletons  0.0000000 0.073581639
independent 0.0000000 0.013227545
shared025   0.0000000 0.005778783
shared05    0.0000000 0.004094717
shared075   0.0000000 0.003203485
shared1     0.6275908 0.049827094
rep <- 1
shared1_mash_index <- grep("shared1", names(full_res_shared[[rep]]$mash), fixed=TRUE)
shared1_mrmash_index <- grep("shared1", names(full_res_shared[[rep]]$mrmash), fixed=TRUE)
cbind(mash=full_res_shared[[rep]]$mash[shared1_mash_index], mrmash=full_res_shared[[rep]]$mrmash[shared1_mrmash_index])
                 mash       mrmash
shared1.1  0.00000000 1.199888e-03
shared1.2  0.00000000 9.150010e-04
shared1.3  0.00000000 5.433266e-04
shared1.4  0.00000000 2.111343e-04
shared1.5  0.00000000 4.853021e-05
shared1.6  0.00000000 1.022390e-05
shared1.7  0.30916626 7.399424e-06
shared1.8  0.32766242 5.306570e-05
shared1.9  0.00000000 1.684667e-03
shared1.10 0.00000000 2.215773e-02
shared1.11 0.04285059 2.813144e-02
shared1.12 0.00000000 3.041521e-03
shared1.13 0.00000000 2.474187e-06
shared1.14 0.00000000 6.545393e-12
shared1.15 0.00000000 3.066194e-16
shared1.16 0.00000000 1.677825e-16
singleton_mrmash_index <- grep("singleton", names(full_res_shared[[rep]]$mrmash), fixed=TRUE)
mrmash_singletons <- as.matrix(full_res_shared[[rep]]$mrmash[singleton_mrmash_index])
colnames(mrmash_singletons) <- "mr.mash"
mrmash_singletons
                       mr.mash
singleton1_grid1  1.605991e-03
singleton2_grid1  1.602982e-03
singleton3_grid1  1.581394e-03
singleton4_grid1  1.595225e-03
singleton1_grid2  1.628144e-03
singleton2_grid2  1.622513e-03
singleton3_grid2  1.578508e-03
singleton4_grid2  1.608383e-03
singleton1_grid3  1.669894e-03
singleton2_grid3  1.660179e-03
singleton3_grid3  1.568911e-03
singleton4_grid3  1.637407e-03
singleton1_grid4  1.743112e-03
singleton2_grid4  1.729936e-03
singleton3_grid4  1.534967e-03
singleton4_grid4  1.705922e-03
singleton1_grid5  1.848176e-03
singleton2_grid5  1.848463e-03
singleton3_grid5  1.415075e-03
singleton4_grid5  1.882556e-03
singleton1_grid6  1.895308e-03
singleton2_grid6  2.022816e-03
singleton3_grid6  1.047953e-03
singleton4_grid6  2.380027e-03
singleton1_grid7  1.471954e-03
singleton2_grid7  2.293878e-03
singleton3_grid7  3.739509e-04
singleton4_grid7  3.786255e-03
singleton1_grid8  3.644497e-04
singleton2_grid8  2.899588e-03
singleton3_grid8  1.900740e-05
singleton4_grid8  5.718521e-03
singleton1_grid9  4.569486e-06
singleton2_grid9  2.191265e-03
singleton3_grid9  2.418008e-08
singleton4_grid9  1.682016e-03
singleton1_grid10 5.013887e-10
singleton2_grid10 7.209455e-05
singleton3_grid10 2.753999e-13
singleton4_grid10 7.117995e-06
singleton1_grid11 8.376134e-16
singleton2_grid11 9.422352e-09
singleton3_grid11 2.858790e-16
singleton4_grid11 1.213237e-10
singleton1_grid12 2.177151e-16
singleton2_grid12 6.527713e-15
singleton3_grid12 1.625995e-16
singleton4_grid12 3.532881e-16
singleton1_grid13 1.274597e-16
singleton2_grid13 2.242013e-16
singleton3_grid13 9.914684e-17
singleton4_grid13 1.812530e-16
singleton1_grid14 7.940255e-17
singleton2_grid14 1.296163e-16
singleton3_grid14 6.333439e-17
singleton4_grid14 1.080391e-16
singleton1_grid15 5.150367e-17
singleton2_grid15 8.030402e-17
singleton3_grid15 4.174786e-17
singleton4_grid15 6.819531e-17
singleton1_grid16 3.431721e-17
singleton2_grid16 5.195392e-17
singleton3_grid16 2.811397e-17
singleton4_grid16 4.464824e-17
cat("grid\n", grid, "\n")
grid
 0.0007870123 0.001574025 0.003148049 0.006296098 0.0125922 0.02518439 0.05036879 0.1007376 0.2014751 0.4029503 0.8059006 1.611801 3.223602 6.447205 12.89441 25.78882 
rep <- 3
shared1_mash_index <- grep("shared1", names(full_res_shared[[rep]]$mash), fixed=TRUE)
shared1_mrmash_index <- grep("shared1", names(full_res_shared[[rep]]$mrmash), fixed=TRUE)
cbind(mash=full_res_shared[[rep]]$mash[shared1_mash_index], mrmash=full_res_shared[[rep]]$mrmash[shared1_mrmash_index])
                 mash       mrmash
shared1.1  0.00000000 1.160198e-03
shared1.2  0.00000000 9.770173e-04
shared1.3  0.00000000 6.810810e-04
shared1.4  0.00000000 3.185969e-04
shared1.5  0.00000000 7.045753e-05
shared1.6  0.00000000 6.288780e-06
shared1.7  0.44821466 7.102922e-07
shared1.8  0.17299465 1.249491e-06
shared1.9  0.00000000 5.283854e-05
shared1.10 0.00000000 3.682222e-03
shared1.11 0.04096485 3.749967e-02
shared1.12 0.00000000 4.527139e-03
shared1.13 0.00000000 8.027861e-07
shared1.14 0.00000000 3.065601e-13
shared1.15 0.00000000 2.676584e-16
shared1.16 0.00000000 1.499550e-16
singleton_mrmash_index <- grep("singleton", names(full_res_shared[[rep]]$mrmash), fixed=TRUE)
mrmash_singletons <- as.matrix(full_res_shared[[rep]]$mrmash[singleton_mrmash_index])
colnames(mrmash_singletons) <- "mr.mash"
mrmash_singletons
                       mr.mash
singleton1_grid1  1.404434e-03
singleton2_grid1  1.342123e-03
singleton3_grid1  1.383597e-03
singleton4_grid1  1.367811e-03
singleton1_grid2  1.441948e-03
singleton2_grid2  1.317579e-03
singleton3_grid2  1.399932e-03
singleton4_grid2  1.368160e-03
singleton1_grid3  1.518280e-03
singleton2_grid3  1.270515e-03
singleton3_grid3  1.432994e-03
singleton4_grid3  1.368692e-03
singleton1_grid4  1.674964e-03
singleton2_grid4  1.183315e-03
singleton3_grid4  1.500435e-03
singleton4_grid4  1.369075e-03
singleton1_grid5  1.993313e-03
singleton2_grid5  1.029535e-03
singleton3_grid5  1.638289e-03
singleton4_grid5  1.366693e-03
singleton1_grid6  2.547934e-03
singleton2_grid6  7.719050e-04
singleton3_grid6  1.904714e-03
singleton4_grid6  1.343177e-03
singleton1_grid7  2.721278e-03
singleton2_grid7  3.820672e-04
singleton3_grid7  2.226894e-03
singleton4_grid7  1.180342e-03
singleton1_grid8  8.428067e-04
singleton2_grid8  5.203269e-05
singleton3_grid8  1.581478e-03
singleton4_grid8  5.537255e-04
singleton1_grid9  8.836198e-06
singleton2_grid9  3.100257e-07
singleton3_grid9  1.318769e-04
singleton4_grid9  2.847388e-05
singleton1_grid10 4.819858e-10
singleton2_grid10 1.353526e-11
singleton3_grid10 1.180123e-07
singleton4_grid10 1.666166e-08
singleton1_grid11 5.432036e-16
singleton2_grid11 3.662664e-16
singleton3_grid11 3.877412e-13
singleton4_grid11 4.155593e-14
singleton1_grid12 2.164633e-16
singleton2_grid12 1.990798e-16
singleton3_grid12 2.909470e-16
singleton4_grid12 2.730875e-16
singleton1_grid13 1.266512e-16
singleton2_grid13 1.185585e-16
singleton3_grid13 1.628031e-16
singleton4_grid13 1.550296e-16
singleton1_grid14 7.890356e-17
singleton2_grid14 7.455615e-17
singleton3_grid14 9.865637e-17
singleton4_grid14 9.465811e-17
singleton1_grid15 5.119002e-17
singleton2_grid15 4.863013e-17
singleton3_grid15 6.287183e-17
singleton4_grid15 6.058649e-17
singleton1_grid16 3.411483e-17
singleton2_grid16 3.251511e-17
singleton3_grid16 4.140690e-17
singleton4_grid16 4.000810e-17
cat("grid\n", grid, "\n")
grid
 0.0007870123 0.001574025 0.003148049 0.006296098 0.0125922 0.02518439 0.05036879 0.1007376 0.2014751 0.4029503 0.8059006 1.611801 3.223602 6.447205 12.89441 25.78882 

Although the results may seem different at first, we can see that actually mash puts a lot of weight on shared matrices corresponding to small grid values. Also, mr.mash does something similar with the singletons (actually putting weight on very small grid values). So, in this scenario, the two methods perform pretty similarly.

Shared effects among 2 out of 4 responses.

A more challenging scenario is the one where 2 out of 4 responses have shared effects, and the other 2 responses have no effect. It is more challenging because we are not providing the two methods with the covariance matrix that describes this pattern of sharing.

full_res_group_shared <- vector("list", nreps)
group_comparisons_group_shared <- vector("list", nreps)

###Set parameters
n <- 600
p <- 1000
p_causal <- 50
r <- 4
r_causal <- list(1:2)

set.seed(1)

for(rep_i in 1:nreps){
  ###Simulate V, B, X and Y
  out <- simulate_mr_mash_data(n, p, p_causal, r, r_causal, intercepts = rep(1, r),
                               pve=0.5, B_cor=1, B_scale=1, X_cor=0, X_scale=1, V_cor=0)
  colnames(out$Y) <- paste0("Y", seq(1, r))
  rownames(out$Y) <- paste0("N", seq(1, n))
  colnames(out$X) <- paste0("X", seq(1, p))
  rownames(out$X) <- paste0("N", seq(1, n))
  
  ###Get the data
  Y <- out$Y
  X <- out$X
  
  ###Compute grid of variances
  univ_sumstats <- compute_univariate_sumstats(X, Y, standardize=FALSE, standardize.response=FALSE)
  grid <- autoselect.mixsd(univ_sumstats, mult=sqrt(2))^2
  
  ###Compute prior with only canonical matrices
  S0_can <- compute_canonical_covs(ncol(Y), singletons=TRUE, hetgrid=c(0, 0.25, 0.5, 0.75, 1))
  S0 <- expand_cov(S0_can, grid, zeromat=TRUE)
  
  ###Fit grop-lasso to initialize mr.mash
  cvfit_glmnet <- cv.glmnet(x=X, y=Y, family="mgaussian", alpha=1, standardize=FALSE)
  coeff_glmnet <- coef(cvfit_glmnet, s="lambda.min")
  Bhat_glmnet <- matrix(as.numeric(NA), nrow=p, ncol=r)
  for(i in 1:length(coeff_glmnet)){
    Bhat_glmnet[, i] <- as.vector(coeff_glmnet[[i]])[-1]
  }
  prop_nonzero_glmnet <- sum(Bhat_glmnet[, 1]!=0)/p
  
  ###Fit mr.mash
  w0 <- c((1-prop_nonzero_glmnet), rep(prop_nonzero_glmnet/(length(S0)-1), (length(S0)-1)))
  
  ##V diagonal fixed
  fit_mrmash_fixVdiag <- mr.mash(X, Y, S0, w0=w0, update_w0=TRUE, update_w0_method="EM", tol=1e-2,
                                 convergence_criterion="ELBO", compute_ELBO=TRUE, standardize=FALSE, 
                                 verbose=FALSE, update_V=FALSE, update_V_method="diagonal", e=1e-8,
                                 mu1_init=Bhat_glmnet, w0_threshold=0)
  
  ###Fit mash
  data <- mashr::mash_set_data(univ_sumstats$Bhat, univ_sumstats$Shat)
  m.c <- mashr::mash(data, S0_can, grid=sqrt(grid))
  
  ###Comparisons of groups of effects
  singletons_ind <- grep("singleton", names(fit_mrmash_fixVdiag$w0), fixed=TRUE)
  independent_ind <- grep("independent", names(fit_mrmash_fixVdiag$w0), fixed=TRUE)
  shared025_ind <- grep("shared0.25", names(fit_mrmash_fixVdiag$w0), fixed=TRUE)
  shared05_ind <- grep("shared0.5", names(fit_mrmash_fixVdiag$w0), fixed=TRUE)
  shared075_ind <- grep("shared0.75", names(fit_mrmash_fixVdiag$w0), fixed=TRUE)
  shared1_ind <- grep("shared1", names(fit_mrmash_fixVdiag$w0), fixed=TRUE)
  
  dat <- cbind(mash=mashr::get_estimated_pi(m.c, dimension="all"), mrmash=fit_mrmash_fixVdiag$w0)
  
  null <- dat[1, ]
  singletons <- colSums(dat[singletons_ind, ])
  independent <- colSums(dat[independent_ind, ])
  shared025 <- colSums(dat[shared025_ind, ])
  shared05 <- colSums(dat[shared05_ind, ])
  shared075 <- colSums(dat[shared075_ind, ])
  shared1 <- colSums(dat[shared1_ind, ])
  
  all_effects_comparison <- rbind(null, singletons, independent, shared025, shared05, shared075, shared1)
  
  ###Store the results
  full_res_group_shared[[rep_i]] <- list(grid=grid, mash=mashr::get_estimated_pi(m.c, dimension="all"), mrmash=fit_mrmash_fixVdiag$w0)
  group_comparisons_group_shared[[rep_i]] <- all_effects_comparison
}
group_comparisons_group_shared
[[1]]
                   mash      mrmash
null        0.928297926 0.835234132
singletons  0.070340597 0.135150081
independent 0.000000000 0.006228629
shared025   0.000000000 0.010212117
shared05    0.001361478 0.005156761
shared075   0.000000000 0.004126225
shared1     0.000000000 0.003892056

[[2]]
                   mash      mrmash
null        0.879285762 0.902022278
singletons  0.114912059 0.068097698
independent 0.000000000 0.004263393
shared025   0.000000000 0.011555071
shared05    0.005802179 0.006769539
shared075   0.000000000 0.003752222
shared1     0.000000000 0.003539799

[[3]]
                   mash      mrmash
null        0.863169360 0.810863304
singletons  0.099972880 0.142764905
independent 0.000000000 0.006410659
shared025   0.005613535 0.012886874
shared05    0.000000000 0.009983555
shared075   0.000000000 0.008262143
shared1     0.031244224 0.008828560

[[4]]
                  mash      mrmash
null        0.87588445 0.805589180
singletons  0.09796843 0.140965201
independent 0.00000000 0.007195538
shared025   0.00452016 0.017890762
shared05    0.00000000 0.009910354
shared075   0.00000000 0.009296777
shared1     0.02162696 0.009152188

[[5]]
                  mash      mrmash
null        0.94439827 0.908692609
singletons  0.04773445 0.064684269
independent 0.00000000 0.002783679
shared025   0.00786728 0.010834784
shared05    0.00000000 0.005708702
shared075   0.00000000 0.003442114
shared1     0.00000000 0.003853843

[[6]]
                   mash      mrmash
null        0.901303846 0.815397670
singletons  0.093035537 0.153523108
independent 0.000000000 0.006148604
shared025   0.005660616 0.010339913
shared05    0.000000000 0.007439841
shared075   0.000000000 0.003701149
shared1     0.000000000 0.003449715

[[7]]
                   mash      mrmash
null        0.930456311 0.816205838
singletons  0.053844464 0.133556736
independent 0.000000000 0.008297632
shared025   0.005598917 0.016761635
shared05    0.000000000 0.010584781
shared075   0.000000000 0.007726427
shared1     0.010100308 0.006866951

[[8]]
                   mash      mrmash
null        0.855825504 0.846304309
singletons  0.103385174 0.113905018
independent 0.016219469 0.009602098
shared025   0.004866378 0.012472593
shared05    0.000000000 0.006403750
shared075   0.000000000 0.005798032
shared1     0.019703475 0.005514199

[[9]]
                   mash      mrmash
null        0.845494230 0.767902081
singletons  0.151293304 0.190952882
independent 0.000000000 0.013976707
shared025   0.003212466 0.010884246
shared05    0.000000000 0.009603149
shared075   0.000000000 0.003586780
shared1     0.000000000 0.003094154

[[10]]
                   mash      mrmash
null        0.831073635 0.799260719
singletons  0.131421183 0.136759654
independent 0.000000000 0.006418194
shared025   0.005834057 0.011451908
shared05    0.000000000 0.017516808
shared075   0.000000000 0.011855197
shared1     0.031671125 0.016737519
rep <- 1
shared1_mash_index <- grep("shared1", names(full_res_group_shared[[rep]]$mash), fixed=TRUE)
shared1_mrmash_index <- grep("shared1", names(full_res_group_shared[[rep]]$mrmash), fixed=TRUE)
cbind(mash=full_res_group_shared[[rep]]$mash[shared1_mash_index], mrmash=full_res_group_shared[[rep]]$mrmash[shared1_mrmash_index])
           mash       mrmash
shared1.1     0 5.804524e-04
shared1.2     0 5.841355e-04
shared1.3     0 5.904487e-04
shared1.4     0 5.988450e-04
shared1.5     0 5.991376e-04
shared1.6     0 5.439875e-04
shared1.7     0 3.327333e-04
shared1.8     0 6.156989e-05
shared1.9     0 7.456100e-07
shared1.10    0 8.991629e-11
shared1.11    0 5.131231e-16
shared1.12    0 2.522618e-16
shared1.13    0 1.465779e-16
shared1.14    0 9.053202e-17
shared1.15    0 5.829978e-17
shared1.16    0 3.863100e-17
shared1.17    0 2.610576e-17
shared1.18    0 1.788299e-17
shared1.19    0 1.236661e-17
shared1.20    0 8.608553e-18
shared1.21    0 6.020339e-18
shared1.22    0 4.224011e-18
shared1.23    0 2.970461e-18
singleton_mash_index <- grep("singleton", names(full_res_group_shared[[rep]]$mash), fixed=TRUE)
singleton_mrmash_index <- grep("singleton", names(full_res_group_shared[[rep]]$mrmash), fixed=TRUE)
cbind(mash=full_res_group_shared[[rep]]$mash[singleton_mash_index], mrmash=full_res_group_shared[[rep]]$mrmash[singleton_mrmash_index])
                     mash       mrmash
singleton1.1  0.000000000 5.764636e-04
singleton2.1  0.000000000 5.765507e-04
singleton3.1  0.000000000 5.774814e-04
singleton4.1  0.000000000 5.813787e-04
singleton1.2  0.000000000 5.765062e-04
singleton2.2  0.000000000 5.766803e-04
singleton3.2  0.000000000 5.784997e-04
singleton4.2  0.000000000 5.863808e-04
singleton1.3  0.000000000 5.765914e-04
singleton2.3  0.000000000 5.769396e-04
singleton3.3  0.000000000 5.804102e-04
singleton4.3  0.000000000 5.965186e-04
singleton1.4  0.000000000 5.767617e-04
singleton2.4  0.000000000 5.774585e-04
singleton3.4  0.000000000 5.837287e-04
singleton4.4  0.000000000 6.173339e-04
singleton1.5  0.000000000 5.771022e-04
singleton2.5  0.000000000 5.784974e-04
singleton3.5  0.000000000 5.883735e-04
singleton4.5  0.000000000 6.611580e-04
singleton1.6  0.000000000 5.777830e-04
singleton2.6  0.000000000 5.805799e-04
singleton3.6  0.000000000 5.899701e-04
singleton4.6  0.000000000 7.578118e-04
singleton1.7  0.000000000 5.791437e-04
singleton2.7  0.000000000 5.847632e-04
singleton3.7  0.000000000 5.661458e-04
singleton4.7  0.000000000 9.879034e-04
singleton1.8  0.000000000 5.818611e-04
singleton2.8  0.000000000 5.932037e-04
singleton3.8  0.000000000 4.515696e-04
singleton4.8  0.000000000 1.575315e-03
singleton1.9  0.000000000 5.872782e-04
singleton2.9  0.000000000 6.103828e-04
singleton3.9  0.000000000 2.072121e-04
singleton4.9  0.002143455 2.653733e-03
singleton1.10 0.000000000 5.980265e-04
singleton2.10 0.000000000 6.459591e-04
singleton3.10 0.000000000 2.772324e-05
singleton4.10 0.000000000 1.373454e-03
singleton1.11 0.000000000 6.190773e-04
singleton2.11 0.000000000 7.221862e-04
singleton3.11 0.000000000 3.021797e-07
singleton4.11 0.000000000 1.205659e-05
singleton1.12 0.000000000 6.587657e-04
singleton2.12 0.000000000 8.966020e-04
singleton3.12 0.000000000 3.260508e-11
singleton4.12 0.000000000 1.622409e-10
singleton1.13 0.000000000 7.262007e-04
singleton2.13 0.000000000 1.347409e-03
singleton3.13 0.000000000 5.098678e-16
singleton4.13 0.000000000 4.495585e-16
singleton1.14 0.000000000 8.255872e-04
singleton2.14 0.000000000 2.784863e-03
singleton3.14 0.000000000 2.614697e-16
singleton4.14 0.000000000 2.283779e-16
singleton1.15 0.000000000 1.130979e-03
singleton2.15 0.000000000 8.990092e-03
singleton3.15 0.000000000 1.504553e-16
singleton4.15 0.000000000 1.318129e-16
singleton1.16 0.000000000 4.337453e-03
singleton2.16 0.000000000 3.439298e-02
singleton3.16 0.000000000 9.244449e-17
singleton4.16 0.000000000 8.156312e-17
singleton1.17 0.006000800 3.046440e-02
singleton2.17 0.039376288 1.712125e-02
singleton3.17 0.000000000 5.936272e-17
singleton4.17 0.000000000 5.271942e-17
singleton1.18 0.013361854 3.244618e-03
singleton2.18 0.009458199 2.449626e-05
singleton3.18 0.000000000 3.927188e-17
singleton4.18 0.000000000 3.505787e-17
singleton1.19 0.000000000 1.267160e-07
singleton2.19 0.000000000 2.366637e-11
singleton3.19 0.000000000 2.651334e-17
singleton4.19 0.000000000 2.375996e-17
singleton1.20 0.000000000 4.339162e-15
singleton2.20 0.000000000 3.252442e-16
singleton3.20 0.000000000 1.815136e-17
singleton4.20 0.000000000 1.631217e-17
singleton1.21 0.000000000 2.483216e-16
singleton2.21 0.000000000 1.769258e-16
singleton3.21 0.000000000 1.254739e-17
singleton4.21 0.000000000 1.129885e-17
singleton1.22 0.000000000 1.404672e-16
singleton2.22 0.000000000 1.056926e-16
singleton3.22 0.000000000 8.732201e-18
singleton4.22 0.000000000 7.874664e-18
singleton1.23 0.000000000 8.603417e-17
singleton2.23 0.000000000 6.682164e-17
singleton3.23 0.000000000 6.105780e-18
singleton4.23 0.000000000 5.511834e-18
cat("grid\n", grid, "\n")
grid
 1.001633e-05 2.003266e-05 4.006532e-05 8.013064e-05 0.0001602613 0.0003205226 0.0006410451 0.00128209 0.00256418 0.005128361 0.01025672 0.02051344 0.04102689 0.08205377 0.1641075 0.3282151 0.6564302 1.31286 2.625721 5.251442 10.50288 21.00577 42.01153 
rep <- 3
shared1_mash_index <- grep("shared1", names(full_res_group_shared[[rep]]$mash), fixed=TRUE)
shared1_mrmash_index <- grep("shared1", names(full_res_group_shared[[rep]]$mrmash), fixed=TRUE)
cbind(mash=full_res_group_shared[[rep]]$mash[shared1_mash_index], mrmash=full_res_group_shared[[rep]]$mrmash[shared1_mrmash_index])
                 mash       mrmash
shared1.1  0.00000000 7.292007e-04
shared1.2  0.00000000 7.456985e-04
shared1.3  0.00000000 7.797634e-04
shared1.4  0.00000000 8.520617e-04
shared1.5  0.00000000 1.011874e-03
shared1.6  0.00000000 1.370860e-03
shared1.7  0.03124422 1.961326e-03
shared1.8  0.00000000 1.338088e-03
shared1.9  0.00000000 3.968567e-05
shared1.10 0.00000000 2.400590e-09
shared1.11 0.00000000 6.589887e-16
shared1.12 0.00000000 2.750390e-16
shared1.13 0.00000000 1.551721e-16
shared1.14 0.00000000 9.453068e-17
shared1.15 0.00000000 6.045326e-17
shared1.16 0.00000000 3.990753e-17
shared1.17 0.00000000 2.691019e-17
shared1.18 0.00000000 1.841003e-17
shared1.19 0.00000000 1.272066e-17
shared1.20 0.00000000 8.850328e-18
shared1.21 0.00000000 6.187253e-18
shared1.22 0.00000000 4.340094e-18
shared1.23 0.00000000 3.051601e-18
singleton_mash_index <- grep("singleton", names(full_res_group_shared[[rep]]$mash), fixed=TRUE)
singleton_mrmash_index <- grep("singleton", names(full_res_group_shared[[rep]]$mrmash), fixed=TRUE)
cbind(mash=full_res_group_shared[[rep]]$mash[singleton_mash_index], mrmash=full_res_group_shared[[rep]]$mrmash[singleton_mrmash_index])
                     mash       mrmash
singleton1.1  0.000000000 7.128997e-04
singleton2.1  0.000000000 7.131125e-04
singleton3.1  0.000000000 7.062703e-04
singleton4.1  0.000000000 7.224671e-04
singleton1.2  0.000000000 7.127369e-04
singleton2.2  0.000000000 7.131623e-04
singleton3.2  0.000000000 6.995716e-04
singleton4.2  0.000000000 7.319820e-04
singleton1.3  0.000000000 7.124116e-04
singleton2.3  0.000000000 7.132620e-04
singleton3.3  0.000000000 6.864550e-04
singleton4.3  0.000000000 7.513437e-04
singleton1.4  0.000000000 7.117617e-04
singleton2.4  0.000000000 7.134614e-04
singleton3.4  0.000000000 6.613452e-04
singleton4.4  0.000000000 7.914022e-04
singleton1.5  0.000000000 7.104654e-04
singleton2.5  0.000000000 7.138598e-04
singleton3.5  0.000000000 6.155808e-04
singleton4.5  0.000000000 8.768876e-04
singleton1.6  0.000000000 7.078867e-04
singleton2.6  0.000000000 7.146560e-04
singleton3.6  0.000000000 5.411546e-04
singleton4.6  0.000000000 1.069087e-03
singleton1.7  0.000000000 7.027843e-04
singleton2.7  0.000000000 7.162452e-04
singleton3.7  0.000000000 4.517846e-04
singleton4.7  0.000000000 1.527611e-03
singleton1.8  0.000000000 6.927950e-04
singleton2.8  0.000000000 7.194106e-04
singleton3.8  0.000000000 4.486044e-04
singleton4.8  0.000000000 2.509898e-03
singleton1.9  0.000000000 6.736470e-04
singleton2.9  0.000000000 7.256888e-04
singleton3.9  0.000000000 1.124191e-03
singleton4.9  0.000000000 2.587961e-03
singleton1.10 0.000000000 6.384382e-04
singleton2.10 0.000000000 7.380281e-04
singleton3.10 0.011571742 6.361897e-03
singleton4.10 0.000000000 1.939127e-04
singleton1.11 0.000000000 5.787306e-04
singleton2.11 0.000000000 7.617994e-04
singleton3.11 0.000000000 1.431522e-03
singleton4.11 0.000000000 4.255691e-08
singleton1.12 0.000000000 4.921179e-04
singleton2.12 0.000000000 8.056010e-04
singleton3.12 0.000000000 1.215718e-07
singleton4.12 0.000000000 6.738458e-15
singleton1.13 0.000000000 4.009638e-04
singleton2.13 0.000000000 8.800421e-04
singleton3.13 0.000000000 3.193461e-15
singleton4.13 0.000000000 3.143761e-16
singleton1.14 0.000000000 3.818772e-04
singleton2.14 0.000000000 1.013642e-03
singleton3.14 0.000000000 2.755916e-16
singleton4.14 0.000000000 1.731001e-16
singleton1.15 0.000000000 7.683530e-04
singleton2.15 0.000000000 1.558500e-03
singleton3.15 0.000000000 1.536670e-16
singleton4.15 0.000000000 1.039770e-16
singleton1.16 0.000000000 6.125854e-03
singleton2.16 0.000000000 6.793033e-03
singleton3.16 0.000000000 9.325122e-17
singleton4.16 0.000000000 6.591760e-17
singleton1.17 0.045191638 4.409961e-02
singleton2.17 0.024325769 3.480306e-02
singleton3.17 0.000000000 5.956683e-17
singleton4.17 0.000000000 4.327097e-17
singleton1.18 0.009726944 2.257997e-03
singleton2.18 0.009156788 1.395876e-03
singleton3.18 0.000000000 3.931524e-17
singleton4.18 0.000000000 2.906963e-17
singleton1.19 0.000000000 2.245349e-08
singleton2.19 0.000000000 1.007169e-08
singleton3.19 0.000000000 2.651435e-17
singleton4.19 0.000000000 1.983726e-17
singleton1.20 0.000000000 5.669077e-16
singleton2.20 0.000000000 4.816579e-16
singleton3.20 0.000000000 1.814301e-17
singleton4.20 0.000000000 1.368315e-17
singleton1.21 0.000000000 2.405718e-16
singleton2.21 0.000000000 2.293477e-16
singleton3.21 0.000000000 1.253867e-17
singleton4.21 0.000000000 9.508590e-18
singleton1.22 0.000000000 1.371514e-16
singleton2.22 0.000000000 1.317577e-16
singleton3.22 0.000000000 8.725155e-18
singleton4.22 0.000000000 6.641906e-18
singleton1.23 0.000000000 8.433136e-17
singleton2.23 0.000000000 8.138273e-17
singleton3.23 0.000000000 6.100529e-18
singleton4.23 0.000000000 4.656299e-18
cat("grid\n", grid, "\n")
grid
 1.001633e-05 2.003266e-05 4.006532e-05 8.013064e-05 0.0001602613 0.0003205226 0.0006410451 0.00128209 0.00256418 0.005128361 0.01025672 0.02051344 0.04102689 0.08205377 0.1641075 0.3282151 0.6564302 1.31286 2.625721 5.251442 10.50288 21.00577 42.01153 

Again, the two methods seem to perform similarly by trying to “reconstruct” the that pattern of sharing by using singleton matrices, and loading on other matrices only with very small or small grid values


sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] glmnet_2.0-16        foreach_1.4.4        Matrix_1.2-15       
[4] mr.mash.alpha_0.1-96

loaded via a namespace (and not attached):
 [1] MBSP_1.0           Rcpp_1.0.4.6       plyr_1.8.6        
 [4] compiler_3.5.1     mashr_0.2.38       later_0.7.5       
 [7] git2r_0.26.1       workflowr_1.6.2    iterators_1.0.10  
[10] tools_3.5.1        digest_0.6.25      evaluate_0.14     
[13] lattice_0.20-38    GIGrvg_0.5         yaml_2.2.1        
[16] mvtnorm_1.1-1      SparseM_1.77       invgamma_1.1      
[19] coda_0.19-3        stringr_1.4.0      knitr_1.20        
[22] fs_1.3.1           MatrixModels_0.4-1 rprojroot_1.3-2   
[25] grid_3.5.1         glue_1.4.1         R6_2.4.1          
[28] rmarkdown_1.10     mixsqp_0.3-44      rmeta_3.0         
[31] irlba_2.3.3        ashr_2.2-50        magrittr_1.5      
[34] whisker_0.3-2      codetools_0.2-15   matrixStats_0.56.0
[37] backports_1.1.8    promises_1.0.1     htmltools_0.3.6   
[40] mcmc_0.9-6         MASS_7.3-51.1      assertthat_0.2.1  
[43] abind_1.4-5        httpuv_1.4.5       quantreg_5.36     
[46] stringi_1.4.6      MCMCpack_1.4-4     truncnorm_1.0-8   
[49] SQUAREM_2020.3