Last updated: 2024-06-18
Checks: 6 1
Knit directory: zinck-website/
This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
The R Markdown file has unstaged changes. To know which version of
the R Markdown file created these results, you’ll want to first commit
it to the Git repo. If you’re still working on the analysis, you can
ignore this warning. When you’re finished, you can run
wflow_publish
to commit the R Markdown file and build the
HTML.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20240617)
was run prior to running
the code in the R Markdown file. Setting a seed ensures that any results
that rely on randomness, e.g. subsampling or permutations, are
reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 51a584c. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for
the analysis have been committed to Git prior to generating the results
(you can use wflow_publish
or
wflow_git_commit
). workflowr only checks the R Markdown
file, but you know if there are other scripts or data files that it
depends on. Below is the status of the Git repository when the results
were generated:
Ignored files:
Ignored: .DS_Store
Unstaged changes:
Modified: analysis/simulation.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were
made to the R Markdown (analysis/simulation.Rmd
) and HTML
(docs/simulation.html
) files. If you’ve configured a remote
Git repository (see ?wflow_git_remote
), click on the
hyperlinks in the table below to view the files as they were in that
past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
html | ab6400d | Patron | 2024-06-18 | Build and publish the website |
Rmd | a6c38f8 | Patron | 2024-06-18 | Add home, experiment, and simulation pages |
We take the colon cancer (CRC) dataset which encompasses five distinct studies each originating from different countries. We randomly select roughly half of the samples from each metagenomic study, which are pooled together for further analysis. For the sake of this example, we retain the top 100 most abundant species according to the average proportions. Among these species, we randomly selected 30 biomarkers and simulated both continuous and binary outcomes using the symmetric reformulation of the log-contrast model:
g(E(yi))=p∑j=1log(ˉXij)βjsubject top∑j=1βj=0 where g(.) is the link function and ˉXij is the observed proportions based on the count matrix with zero replaced by 0.5 to avoid taking log on zero values. For simulating the continuous responses, the link function g(.) is the identity function, and for simulating the binary responses, the link function g(.) is the logit link function. We adopt the signal strengths in such a way that the zero-sum constraint is satisfied. We replicate a single iteration of this setting for both continuous and binary outcomes.
load("/Users/Patron/Documents/zinLDA research/count.Rdata")
load("/Users/Patron/Documents/zinLDA research/meta.RData")
library(rstan)
Loading required package: StanHeaders
Loading required package: ggplot2
rstan (Version 2.21.8, GitRev: 2e1f913d3ca3)
For execution on a local, multicore CPU with excess RAM we recommend calling
options(mc.cores = parallel::detectCores()).
To avoid recompilation of unchanged Stan programs, we recommend calling
rstan_options(auto_write = TRUE)
library(glmnet)
Loading required package: Matrix
Loaded glmnet 4.1-7
library(knockoff)
library(zinck)
library(kosel)
library(dplyr)
Attaching package: 'dplyr'
The following objects are masked from 'package:stats':
filter, lag
The following objects are masked from 'package:base':
intersect, setdiff, setequal, union
library(reshape2)
generate_data <- function(p,seed){
dcount <- count[,order(decreasing=T,colSums(count,na.rm=T),
apply(count,2L,paste,collapse=''))] ## ordering the columns w/ decreasing abundance
####### Randomly sampling patients from 574 observations #######
set.seed(seed)
sel_index <- rbinom(nrow(meta),size=1,prob=0.5)
selected_samples <- which(sel_index==1)
meta_selected <- meta[selected_samples,]
X <- dcount[selected_samples,]
if(p == 100){
X1 <- X[,1:p]
n = nrow(X1)
Five1 = c(-3,3,2.5,-1, -1.5)
Five2 = c(3,3,-2,-2,-2)
Five3 = c(1,-1,3,-2,-1)
Five4 = c(-1,1,2,-1,-1)
Five5 = c(3,3,-3,-2,-1)
Five6 = c(-1,1,-2,1,1)
Five_all <- c(Five1,Five2,Five3,Five4,Five5,Five6) ## Signals satisfy sum-to-zero constraint ##
randBeta <- rep(0,p)
set.seed(1)
rand_indices <- sample(1:p,size=30,replace=FALSE) ## Randomly injecting 30 signals out of p=100 ##
set.seed(1)
randBeta[rand_indices] <- sample(Five_all,size=30,replace=FALSE)
W1 <- log_normalize(X1) ## log-normalizing counts to make it compositional
##### Generating continuous responses ######
set.seed(1)
eps=rnorm(n,mean = 0, sd=1)
Y1 <- W1 %*% randBeta + eps
##### Generating binary responses #####
set.seed(1)
pr = 1/(1+exp(-W1 %*% randBeta))
Y1_bin = rbinom(n,1,pr)
} else if (p %in% c(200,300,400)) {
X1 <- X[,1:p]
n = nrow(X1)
Five1 = c(-3,3,2.5,-1, -1.5)
Five2 = c(3,3,-2,-2,-2)
Five3 = c(1,-1,3,-2,-1)
Five4 = c(-1,1,2,-1,-1)
Five5 = c(3,3,-3,-2,-1)
Five6 = c(-1,1,-2,1,1)
Five_all <- c(Five1,Five2,Five3,Five4,Five5,Five6) ## Signals satisfy sum-to-zero constraint ##
randBeta <- rep(0,p)
set.seed(1)
rand_indices <- sample(1:200,size=30,replace=FALSE) ## Randomly injecting 30 signals out of p=200 ##
set.seed(1)
randBeta[rand_indices] <- sample(Five_all,size=30,replace=FALSE)
W1 <- log_normalize(X1) ## log-normalizing counts to make it compositional
##### Generating continuous responses ######
set.seed(1)
eps=rnorm(n,mean = 0, sd=1)
Y1 <- W1 %*% randBeta + eps
##### Generating binary responses #####
set.seed(1)
pr = 1/(1+exp(-W1 %*% randBeta))
Y1_bin = rbinom(n,1,pr)
}
return(list(Y1 = Y1, X1 = X1, W1 = W1, Y1_bin = Y1_bin, index = rand_indices))
}
Now, let’s look at the case when p=100. On extracting the sample taxa count matrix X1, we train the zinck model using ADVI. Plugging in the learnt parameters into the generative framework of zinck, we generate the knockoff matrix ˜X1.
X1 <- generate_data(p=100, seed=2)$X1
fit1 <- zinck::fit.zinck(X1,num_clusters = 6, method="ADVI", seed = 1)
theta <- fit1$theta
beta <- fit1$beta
X1_tilde <- generateKnockoff(X1,theta,beta,seed=1)
Now that we have generated the knockoff copy, we will fit a model associating the response Y1 (both continuous and binary) with the augmented set of covariates [X1,˜X1]D×2p. We fit a glmnet model separately for each outcome type and compute the importance statistics for each feature. Then, we detect the non-zero features for four different FDR thresholds 0.05, 0.1, 0.15, and 0.2.
W1 <- generate_data(p=100, seed=2)$W1 ## Log-Normalized Sample Taxa matrix
W_tilde1 <- log_normalize(X1_tilde) ## Log-Normalized Knockoff Matrix
Y1 <- generate_data(p=100, seed=2)$Y1 ## Continuous Responses
Y1_bin <- generate_data(p = 100, seed = 2)$Y1_bin ## Binary Responses
index <- generate_data(p = 100, seed = 2)$index ## True signals
################### Continuous Outcomes #########################
############## FDR = 0.05 ###############
index_est <- zinck.filter(W1,W_tilde1,Y1,model="glmnet",fdr=0.05)
Selected variables:
[1] 1 7 14 20 21 28 33 34 35 37 38 39 42 43 44 51 54 59 68 70 73 74 79 82 83
[26] 84 85 87 96 97
# ### Evaluation metrics ###
FN <- sum(index %in% index_est == FALSE) ## False Negatives
FP <- sum(index_est %in% index == FALSE) ## False Positives
TP <- sum(index_est %in% index == TRUE) ## True Positives
estimated_FDR <- FP / (FP + TP) # Evaluating the empirical False Discovery Rate
estimated_power <- TP / (TP + FN) # Evaluating the empirical Power or TPR
print(paste("Estimated FDR for Target 0.05 (Continuous case):", estimated_FDR))
[1] "Estimated FDR for Target 0.05 (Continuous case): 0"
print(paste("Estimated Power for Target 0.05 (Continuous case):", estimated_power))
[1] "Estimated Power for Target 0.05 (Continuous case): 1"
############## FDR = 0.1 ###############
index_est <- zinck.filter(W1,W_tilde1,Y1,model="glmnet",fdr=0.1)
Selected variables:
[1] 1 7 14 20 21 28 33 34 35 37 38 39 42 43 44 51 54 59 68 70 73 74 79 82 83
[26] 84 85 87 96 97
# ### Evaluation metrics ###
FN <- sum(index %in% index_est == FALSE) ## False Negatives
FP <- sum(index_est %in% index == FALSE) ## False Positives
TP <- sum(index_est %in% index == TRUE) ## True Positives
estimated_FDR <- FP / (FP + TP) # Evaluating the empirical False Discovery Rate
estimated_power <- TP / (TP + FN) # Evaluating the empirical Power or TPR
print(paste("Estimated FDR for Target 0.1 (Continuous case):", estimated_FDR))
[1] "Estimated FDR for Target 0.1 (Continuous case): 0"
print(paste("Estimated Power for Target 0.1 (Continuous case):", estimated_power))
[1] "Estimated Power for Target 0.1 (Continuous case): 1"
############## FDR = 0.15 ###############
index_est <- zinck.filter(W1,W_tilde1,Y1,model="glmnet",fdr=0.15)
Selected variables:
[1] 1 7 14 20 21 28 33 34 35 37 38 39 42 43 44 51 54 59 68 70 73 74 79 82 83
[26] 84 85 87 96 97
# ### Evaluation metrics ###
FN <- sum(index %in% index_est == FALSE) ## False Negatives
FP <- sum(index_est %in% index == FALSE) ## False Positives
TP <- sum(index_est %in% index == TRUE) ## True Positives
estimated_FDR <- FP / (FP + TP) # Evaluating the empirical False Discovery Rate
estimated_power <- TP / (TP + FN) # Evaluating the empirical Power or TPR
print(paste("Estimated FDR for Target 0.15 (Continuous case):", estimated_FDR))
[1] "Estimated FDR for Target 0.15 (Continuous case): 0"
print(paste("Estimated Power for Target 0.15 (Continuous case):", estimated_power))
[1] "Estimated Power for Target 0.15 (Continuous case): 1"
############## FDR = 0.2 ###############
index_est <- zinck.filter(W1,W_tilde1,Y1,model="glmnet",fdr=0.2)
Selected variables:
[1] 1 7 14 20 21 28 33 34 35 37 38 39 42 43 44 51 54 59 68 70 73 74 79 82 83
[26] 84 85 87 96 97
# ### Evaluation metrics ###
FN <- sum(index %in% index_est == FALSE) ## False Negatives
FP <- sum(index_est %in% index == FALSE) ## False Positives
TP <- sum(index_est %in% index == TRUE) ## True Positives
estimated_FDR <- FP / (FP + TP) # Evaluating the empirical False Discovery Rate
estimated_power <- TP / (TP + FN) # Evaluating the empirical Power or TPR
print(paste("Estimated FDR for Target 0.2 (Continuous case):", estimated_FDR))
[1] "Estimated FDR for Target 0.2 (Continuous case): 0"
print(paste("Estimated Power for Target 0.2 (Continuous case):", estimated_power))
[1] "Estimated Power for Target 0.2 (Continuous case): 1"
################### Binary Outcomes #########################
############## FDR = 0.05 ###############
index_est <- zinck.filter(W1,W_tilde1,Y1_bin,model="glmnet",fdr=0.05)
Selected variables:
[1] 7 20 28 33 34 35 37 38 43 44 54 59 68 70 73 74 82 87 97
# ### Evaluation metrics ###
FN <- sum(index %in% index_est == FALSE) ## False Negatives
FP <- sum(index_est %in% index == FALSE) ## False Positives
TP <- sum(index_est %in% index == TRUE) ## True Positives
estimated_FDR <- FP / (FP + TP) # Evaluating the empirical False Discovery Rate
estimated_power <- TP / (TP + FN) # Evaluating the empirical Power or TPR
print(paste("Estimated FDR for Target 0.05 (Binary case):", estimated_FDR))
[1] "Estimated FDR for Target 0.05 (Binary case): 0"
print(paste("Estimated Power for Target 0.05 (Binary case):", estimated_power))
[1] "Estimated Power for Target 0.05 (Binary case): 0.633333333333333"
############## FDR = 0.1 ###############
index_est <- zinck.filter(W1,W_tilde1,Y1_bin,model="glmnet",fdr=0.1)
Selected variables:
[1] 1 7 20 28 33 34 35 37 38 43 44 54 59 68 70 73 74 82 87 97
# ### Evaluation metrics ###
FN <- sum(index %in% index_est == FALSE) ## False Negatives
FP <- sum(index_est %in% index == FALSE) ## False Positives
TP <- sum(index_est %in% index == TRUE) ## True Positives
estimated_FDR <- FP / (FP + TP) # Evaluating the empirical False Discovery Rate
estimated_power <- TP / (TP + FN) # Evaluating the empirical Power or TPR
print(paste("Estimated FDR for Target 0.1 (Binary case):", estimated_FDR))
[1] "Estimated FDR for Target 0.1 (Binary case): 0"
print(paste("Estimated Power for Target 0.1 (Binary case):", estimated_power))
[1] "Estimated Power for Target 0.1 (Binary case): 0.666666666666667"
############## FDR = 0.15 ###############
index_est <- zinck.filter(W1,W_tilde1,Y1_bin,model="glmnet",fdr=0.15)
Selected variables:
[1] 1 7 20 21 28 33 34 35 37 38 43 44 54 59 63 68 70 73 74 82 84 87 97
# ### Evaluation metrics ###
FN <- sum(index %in% index_est == FALSE) ## False Negatives
FP <- sum(index_est %in% index == FALSE) ## False Positives
TP <- sum(index_est %in% index == TRUE) ## True Positives
estimated_FDR <- FP / (FP + TP) # Evaluating the empirical False Discovery Rate
estimated_power <- TP / (TP + FN) # Evaluating the empirical Power or TPR
print(paste("Estimated FDR for Target 0.15 (Binary case):", estimated_FDR))
[1] "Estimated FDR for Target 0.15 (Binary case): 0.0434782608695652"
print(paste("Estimated Power for Target 0.15 (Binary case):", estimated_power))
[1] "Estimated Power for Target 0.15 (Binary case): 0.733333333333333"
############## FDR = 0.2 ###############
index_est <- zinck.filter(W1,W_tilde1,Y1_bin,model="glmnet",fdr=0.2)
Selected variables:
[1] 1 7 20 21 28 33 34 35 37 38 43 44 51 54 59 63 68 70 73 74 82 84 87 97
# ### Evaluation metrics ###
FN <- sum(index %in% index_est == FALSE) ## False Negatives
FP <- sum(index_est %in% index == FALSE) ## False Positives
TP <- sum(index_est %in% index == TRUE) ## True Positives
estimated_FDR <- FP / (FP + TP) # Evaluating the empirical False Discovery Rate
estimated_power <- TP / (TP + FN) # Evaluating the empirical Power or TPR
print(paste("Estimated FDR for Target 0.2 (Binary case):", estimated_FDR))
[1] "Estimated FDR for Target 0.2 (Binary case): 0.0416666666666667"
print(paste("Estimated Power for Target 0.2 (Binary case):", estimated_power))
[1] "Estimated Power for Target 0.2 (Binary case): 0.766666666666667"
The users are encouraged to play with other values of p, such as p=200,300,400.
sessionInfo()
R version 4.1.3 (2022-03-10)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Big Sur/Monterey 10.16
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] reshape2_1.4.4 dplyr_1.1.2 kosel_0.0.1
[4] zinck_0.0.0.9000 knockoff_0.3.6 glmnet_4.1-7
[7] Matrix_1.5-1 rstan_2.21.8 ggplot2_3.4.2
[10] StanHeaders_2.21.0-7 workflowr_1.7.1
loaded via a namespace (and not attached):
[1] Rcpp_1.0.10 lattice_0.21-8 prettyunits_1.1.1
[4] getPass_0.2-2 ps_1.7.5 rprojroot_2.0.3
[7] digest_0.6.31 foreach_1.5.2 utf8_1.2.3
[10] plyr_1.8.8 R6_2.5.1 stats4_4.1.3
[13] evaluate_0.21 httr_1.4.6 pillar_1.9.0
[16] rlang_1.1.1 rstudioapi_0.14 whisker_0.4.1
[19] callr_3.7.3 jquerylib_0.1.4 ordinalNet_2.12
[22] rmarkdown_2.22 splines_4.1.3 stringr_1.5.0
[25] loo_2.6.0 munsell_0.5.0 compiler_4.1.3
[28] httpuv_1.6.11 xfun_0.39 pkgconfig_2.0.3
[31] pkgbuild_1.4.2 shape_1.4.6 htmltools_0.5.5
[34] tidyselect_1.2.0 tibble_3.2.1 gridExtra_2.3
[37] codetools_0.2-19 matrixStats_0.63.0 randomForest_4.7-1.1
[40] fansi_1.0.4 crayon_1.5.2 withr_2.5.0
[43] later_1.3.1 grid_4.1.3 jsonlite_1.8.5
[46] gtable_0.3.3 lifecycle_1.0.3 DBI_1.1.3
[49] git2r_0.32.0 magrittr_2.0.3 scales_1.2.1
[52] RcppParallel_5.1.7 cli_3.6.1 stringi_1.7.12
[55] cachem_1.0.8 fs_1.6.2 promises_1.2.0.1
[58] doParallel_1.0.17 bslib_0.5.0 generics_0.1.3
[61] vctrs_0.6.5 iterators_1.0.14 tools_4.1.3
[64] glue_1.6.2 processx_3.8.1 parallel_4.1.3
[67] fastmap_1.1.1 survival_3.5-5 yaml_2.3.7
[70] inline_0.3.19 colorspace_2.1-0 knitr_1.43
[73] sass_0.4.6