
Webscraping and Parallel Processing
Greg Ridgeway Ruth Moyer

2025-08-26

Table of contents

1 Introduction 1

2 Scraping one page 4
2.1 Movies with no titles . 8

3 Scraping Multiple Pages 9

4 Parallel Computing 15

5 Fun With Movie Data 21
5.1 Inflation adjust . 22

1 Introduction

At the end of our discussion about regular expressions, we introduced the concept of web
scraping. Not all online data is in a tidy, downloadable format such as a .csv or .RData
file. Yet, patterns in the underlying HTML code and regular expressions together provide
a valuable way to “scrape” data off of a webpage. Here, we are going to work through an
example of webscraping. We are going to get data on ticket sales of every movie, for every day
going back to 2010.

As a preliminary matter, some R packages, such as rvest and chromote, can help with web
scraping. Eventually you may wish to explore those packages. For now, we are going to
work with basic fundamentals so that you have the most flexibility to extract data from most
websites.

First, you will need to make sure that you can access the underlying HTML code for the
webpage that you want to scrape. In most browsers you can simply right click on a webpage

1

and then click “View Page Source.” If you are using Microsoft Edge, you can right click on the
webpage, click “View Source” and then look at the “Debugger” tab. In Safari select “Settings,”
select the “Advanced” tab, check “Show Develop menu,” and then whenever viewing a page
you can right click and select “show page source”.

Have a look at the webpage http://www.the-numbers.com/box-office-chart/daily/2025/07/04.
This page contains information about the movies that were shown in theaters on July 4, 2025
and the amount of money (in dollars) that each of those movies grossed that day.

Have a look at the HTML code by looking at the page source for this page using the methods
described above. The first 10 lines should look something like this:

<!DOCTYPE html>
<html xmlns:og="https://ogp.me/ns#">
<head>
<link rel="icon" href="https://www.the-numbers.com/images/logo_2021/favicon.ico">
<script async src="https://www.googletagmanager.com/gtag/js?id=G-5K2DT3XQN5"></script>
<script>window.dataLayer = window.dataLayer || []; function gtag() { dataLayer.push(arguments); } gtag('js', new Date()); gtag('config', 'G-5K2DT3XQN5');</script>
<meta http-equiv="PICS-Label" content='(PICS-1.1 "https://www.icra.org/ratingsv02.html" l gen true for "https://www.the-numbers.com/" r (cb 1 lz 1 nz 1 oz 1 vz 1) "https://www.rsac.org/ratingsv01.html" l gen true for "https://www.the-numbers.com/" r (n 0 s 0 v 0 l 0))'>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<meta name="format-detection" content="telephone=no"> <!-- for apple mobile -->
<script src="https://code.jquery.com/jquery-3.3.1.min.js" integrity="sha256-FgpCb/KJQlLNfOu91ta32o/NMZxltwRo8QtmkMRdAu8=" crossorigin="anonymous"></script>

This is all HTML code to set up the page. If you scroll down a few hundred lines, you will
find code that looks like this:

<thead><tr><th> </th><th> </th><th>Movie Title</th><th>Distributor</th><th>Gross</th><th>%YD</th><th>%LW</th><th>Theaters</th><th>Per
Theater</th><th>Total
Gross</th><th>Days In
Release</th></tr></thead><tbody>
<tr>
<td data-sort="1" class="data">1</td>
<td data-sort="1" class="data">(1)</td>
<td>Jurassic World Rebirth</td>
<td>Universal</td>
<td class="data">$26,235,450</td>
<td data-sort="4" class="data chart_up">+4%</td>
<td data-sort="0" class="data"> </td>
<td data-sort="4308" class="data">4,308</td>
<td data-sort="6090" class="data chart_grey">$6,090</td>
<td data-sort="82040080"class="data">$82,040,080</td>
<td class="data">3</td>
</tr>
<tr>
<td data-sort="2" class="data">2</td>
<td data-sort="2" class="data">(2)</td>

2

http://www.the-numbers.com/box-office-chart/daily/2025/07/04

<td>F1: The Movie</td>
<td>Warner Bros.</td>
<td class="data">$6,960,390</td>
<td data-sort="14" class="data chart_up">+14%</td>

I see Jurassic World Rebirth and F1: The Movie. In addition to the movie name, there are
ticket sales, number of theaters, and more. It is all wrapped in a lot of HTML code to make
it look pretty on a web page, but for our purposes we just want to pull those numbers out.

scan() is a basic R function for reading in text, from the keyboard, from files, from the web, …
however data might arrive. Giving scan() a URL causes scan() to pull down the HTML code
for that page and return it to you. Let’s try one page of movie data. what="" tells scan() to
expect plain text and sep="\n" tells scan() to separate each element when it reaches a line
feed character, signaling the end of a line.

library(dplyr)
a <- scan("http://www.the-numbers.com/box-office-chart/daily/2025/07/04",

what="", sep="\n")
examine the first few lines
a[1:5]

[1] "<!DOCTYPE html>"
[2] "<html xmlns:og=\"https://ogp.me/ns#\">"
[3] "<head>"
[4] "<link rel=\"icon\" href=\"https://www.the-numbers.com/images/logo_2021/favicon.ico\">"
[5] "<script async src=\"https://www.googletagmanager.com/gtag/js?id=G-5K2DT3XQN5\"></script>"

Some websites are more complex or use different text encoding. On those websites scan()
produces unintelligible text. The GET() function from the httr package can sometimes resolve
this.

library(httr)
resp <- GET("http://www.the-numbers.com/box-office-chart/daily/2025/07/04")
a1 <- content(resp, as="text")
a1 <- strsplit(a1,"\n")[[1]]

Also, some Mac users will encounter snags with both of these methods and receive “403 For-
bidden” errors while their Mac colleague right next to them on the same network will not. I
have not figured out why this happens, but have found that making R masquerade as different
browser sometimes works.

3

resp <- GET("http://www.the-numbers.com/box-office-chart/daily/2025/07/04",
user_agent("Mozilla/5.0 (Macintosh; Intel Mac OS X 10_6_8) AppleWebKit/537.13+ (KHTML, like Gecko) Version/5.1.7 Safari/534.57.2"))

a1 <- content(resp, as="text")
a1 <- strsplit(a1,"\n")[[1]]

2 Scraping one page

Now that we have stored in the variable a the HTML code for one day’s movie data in R, let’s
apply some regular expressions to extract the data. The HTML code includes a lot of lines
that do not involve data that interests us. There is code for making the page look nice and
code for presenting advertisements. Let’s start by finding the lines that have the movie names
in them.

Going back to the HTML code, I noticed that both the line with Jurassic World Rebirth and
F1: The Movie have the sequence of characters “#tab=box-office”. By finding a pattern of
characters that always precedes the text that interests us, we can use it to grep the lines we
want. Let’s find every line that has “#tab=box-office” in it.

i <- grep("#tab=box-office", a)
i

[1] 317 330 343 356 369 382 395 408 421 434 447 460 473 486 499 512 525 538 551
[20] 564 577 590 603 616 629 642 655 668 681 694

These are the line numbers that, if the pattern holds, contain our movie titles. Note that
the the numbers you get on your computer might be a little different from the line numbers
shown here. Even if you run this code on a different day, you might get different line numbers
because some of the code, code for advertisements in particular, can frequently change.

Let’s see what these lines of HTML code look like.

a[i]

[1] "<td>Jurassic World Rebirth</td>"
[2] "<td>F1: The Movie</td>"
[3] "<td>How to Train Your Dragon</td>"
[4] "<td>Elio</td>"
[5] "<td>28 Years Later</td>"
[6] "<td>M3GAN 2.0</td>"
[7] "<td>Lilo & Stitch</td>"

4

[8] "<td>Mission: Impossible—
The F…</td>"
[9] "<td>This is Spinal Tap</td>"
[10] "<td>Materialists</td>"
[11] "<td>Sardaar Ji 3</td>"
[12] "<td>From the World of John Wi…</td>"
[13] "<td>The Phoenician Scheme</td>"
[14] "<td>Karate Kid: Legends</td>"
[15] "<td>Final Destination: Bloodl…</td>"
[16] "<td>The Life of Chuck</td>"
[17] "<td>Sinners</td>"
[18] "<td>Sorry, Baby</td>"
[19] "<td>Thunderbolts*</td>"
[20] "<td>The Last Rodeo</td>"
[21] "<td>Friendship</td>"
[22] "<td>Bring Her Back</td>"
[23] "<td>Jane Austen Wrecked My Life</td>"
[24] "<td>Hearts of Darkness: A Fil…</td>"
[25] "<td>Hot Milk</td>"
[26] "<td>The Unholy Trinity</td>"
[27] "<td>Ran</td>"
[28] "<td>Dragon Heart —
Adventures…</td>"
[29] "<td>Dangerous Animals</td>"
[30] "<td>The King of Kings</td>"

Double checking and indeed the first line here is Jurassic World Rebirth and the last line is
The King of Kings. This matches what is on the web page. We now are quite close to having
a list of movies that played in theaters on July 4, 2025. However, as you can see, we have a
lot of excess symbols and HTML code to eliminate before we can have a neat list of movie
names.

HTML tags are always have the form <some code here>. Therefore, any text between a less
than and greater than symbol we should remove. Here is a regular expression that will look
for a < followed by a bunch of characters that are not > followed by the HTML tag ending >…
and gsub() will delete them.

gsub("<[^>]*>", "", a[i])

[1] "Jurassic World Rebirth" "F1: The Movie"
[3] "How to Train Your Dragon" "Elio"
[5] "28 Years Later" "M3GAN 2.0"

5

[7] "Lilo & Stitch" "Mission: Impossible—The F…"
[9] "This is Spinal Tap" "Materialists"
[11] "Sardaar Ji 3" "From the World of John Wi…"
[13] "The Phoenician Scheme" "Karate Kid: Legends"
[15] "Final Destination: Bloodl…" "The Life of Chuck"
[17] "Sinners" "Sorry, Baby"
[19] "Thunderbolts*" "The Last Rodeo"
[21] "Friendship" "Bring Her Back"
[23] "Jane Austen Wrecked My Life" "Hearts of Darkness: A Fil…"
[25] "Hot Milk" "The Unholy Trinity"
[27] "Ran" "Dragon Heart — Adventures…"
[29] "Dangerous Animals" "The King of Kings"

Perfect! Now we just have movie names. You will see some movie names have strange symbols,
like …. That is the HTML code for horizontal ellipses or “…”. These make the text
look prettier on a webpage, but you might need to do more work with gsub() if it is important
that these movie names look right.

Let’s put these movie names in a data frame, data0. This data frame currently has only one
column.

data0 <- data.frame(movie=gsub("<[^>]*>", "", a[i]))

Now we also want to get the daily gross for each movie. Let’s take another look at the HTML
code for Jurassic World Rebirth.

a[i[1] + 0:8]

[1] "<td>Jurassic World Rebirth</td>"
[2] "<td>Universal</td>"
[3] "<td class=\"data\">$26,235,450</td>"
[4] "<td data-sort=\"4\" class=\"data chart_up\">+4%</td>"
[5] "<td data-sort=\"0\" class=\"data\"> </td>"
[6] "<td data-sort=\"4308\" class=\"data\">4,308</td>"
[7] "<td data-sort=\"6090\" class=\"data chart_grey\">$6,090</td>"
[8] "<td data-sort=\"82040080\"class=\"data\">$82,040,080</td>"
[9] "<td class=\"data\">3</td>"

Note that the movie gross is two lines after the movie name. It turns out that this is consistent
for all movies. Since i has the line numbers for the movie names, then i+2 must be the line
numbers containing the daily gross.

6

a[i+2]

[1] "<td class=\"data\">$26,235,450</td>"
[2] "<td class=\"data\">$6,960,390</td>"
[3] "<td class=\"data\">$2,909,540</td>"
[4] "<td class=\"data\">$1,500,046</td>"
[5] "<td class=\"data\">$1,106,889</td>"
[6] "<td class=\"data\">$972,945</td>"
[7] "<td class=\"data\">$962,789</td>"
[8] "<td class=\"data\">$851,931</td>"
[9] "<td class=\"data\">$431,360</td>"
[10] "<td class=\"data\">$354,396</td>"
[11] "<td class=\"data estimate\">$220,000</td>"
[12] "<td class=\"data\">$201,834</td>"
[13] "<td class=\"data\">$116,865</td>"
[14] "<td class=\"data\">$100,872</td>"
[15] "<td class=\"data\">$85,239</td>"
[16] "<td class=\"data\">$73,304</td>"
[17] "<td class=\"data\">$41,283</td>"
[18] "<td class=\"data\">$32,621</td>"
[19] "<td class=\"data\">$14,381</td>"
[20] "<td class=\"data\">$12,136</td>"
[21] "<td class=\"data\">$4,165</td>"
[22] "<td class=\"data\">$4,158</td>"
[23] "<td class=\"data\">$2,798</td>"
[24] "<td class=\"data\">$2,274</td>"
[25] "<td class=\"data\">$796</td>"
[26] "<td class=\"data\">$680</td>"
[27] "<td class=\"data\">$629</td>"
[28] "<td class=\"data\">$606</td>"
[29] "<td class=\"data\">$506</td>"
[30] "<td class=\"data\">$143</td>"

Again we need to strip out the HTML tags. We will also remove the dollar signs and commas
so that R will recognize it as a number. We will add this to data0 also.

data0$gross <- as.numeric(gsub("<[^>]*>|[$,]", "", a[i+2]))

Take a look at the webpage and compare it to the dataset you have now created. All the values
should now match.

7

head(data0)

movie gross
1 Jurassic World Rebirth 26235450
2 F1: The Movie 6960390
3 How to Train Your Dragon 2909540
4 Elio 1500046
5 28 Years Later 1106889
6 M3GAN 2.0 972945

tail(data0)

movie gross
25 Hot Milk 796
26 The Unholy Trinity 680
27 Ran 629
28 Dragon Heart — Adventures… 606
29 Dangerous Animals 506
30 The King of Kings 143

2.1 Movies with no titles

Some movies have no movie titles. Have a look at the February 21, 2011 movies.

a <- scan("https://www.the-numbers.com/box-office-chart/daily/2011/02/21",
what="", sep="\n")

i <- grep("Genesis-Code", a)
a[-10:10 + i]

[1] "<td data-sort=\"0\" class=\"data\"> </td>"
[2] "<td data-sort=\"0\" class=\"data\"> </td>"
[3] "<td data-sort=\"12\" class=\"data\">12</td>"
[4] "<td data-sort=\"155\" class=\"data chart_grey\">$155</td>"
[5] "<td data-sort=\"951246\"class=\"data\">$951,246</td>"
[6] "<td class=\"data\">67</td>"
[7] "</tr>"
[8] "<tr>"
[9] "<td data-sort=\"62\" class=\"data\">62</td>"
[10] "<td data-sort=\"999\" class=\"data\">(-)</td>"
[11] "<td></td>"

8

[12] "<td></td>"
[13] "<td class=\"data estimate\">$1,800</td>"
[14] "<td data-sort=\"0\" class=\"data\"> </td>"
[15] "<td data-sort=\"0\" class=\"data\"> </td>"
[16] "<td data-sort=\"17\" class=\"data\">17</td>"
[17] "<td data-sort=\"106\" class=\"data chart_grey\">$106</td>"
[18] "<td data-sort=\"20300\" class=\"data chart_estimate\">$20,300</td>"
[19] "<td class=\"data\">4</td>"
[20] "</tr>"
[21] "<tr>"

Note that the line for The Genesis Code has the movie title in href, but no movie title is
between the HTML tags <a>. In these cases let’s pull the movie title from the href
argument.

i <- grep("#tab=box-office",a)
data0 <- data.frame(movie = gsub("<[^>]*>","",a[i]),

gross = as.numeric(gsub("<[^>]*>|[,$]","",a[i+2])))
which ones are blank?
j <- which(data0$movie=="")
a[i[j]]

[1] "<td></td>"
[2] "<td></td>"

test regex to pull movie title
gsub(".*/movie/([^#]*)#.*", "\\1", a[i[j]])

[1] "Genesis-Code-The-(2010)" "Rauber-Der"

replace empty movie names
data0$movie[j] <- gsub(".*/movie/([^#]*)#.*", "\\1", a[i[j]]) |>
gsub("-", " ", x=_)

3 Scraping Multiple Pages

We have now successfully scraped data for one day. This is usually the hardest part. But if
we have R code that can correctly scrape one day’s worth of data and the website is consistent
across days, then it is simple to adapt our code to work for all days. So let’s get all movie data

9

from January 1, 2010 through July 31, 2025. That means we are going to be web scraping
5,691 pages of data.

First note that the URL for July 4, 2025 was

https://www.the-numbers.com/box-office-chart/daily/2025/07/04

We can extract data from any other date by using the same URL, but changing the ending to
match the date that we want. Importantly, note that the 07 and the 04 in the URL must have
the leading 0 for the URL to return the correct page.

To start, let’s make a list of all the dates that we intend to scrape.

library(lubridate)
create a sequence of all days to scrape
dates2scrape <- seq(ymd("2010-01-01"), ymd("2025-07-31"), by="days")

Now dates2scrape contains a collection of all the dates with movie data that we wish to
scrape.

dates2scrape[1:5]

[1] "2010-01-01" "2010-01-02" "2010-01-03" "2010-01-04" "2010-01-05"

gsub() to change - to / matching appearance of thenumbers.com URL
gsub("-", "/", dates2scrape[1:5])

[1] "2010/01/01" "2010/01/02" "2010/01/03" "2010/01/04" "2010/01/05"

Our plan is to construct a for-loop within which we will construct a URL from dates2scrape,
pull down the HTML code from that URL, scrape the movie data into a data frame, and then
combine the each day’s data frame into one data frame will all of the movie data. First we
create a list that will contain each day’s data frame.

results <- vector("list", length(dates2scrape))

On iteration i of our for loop we will store that day’s movie data frame in results[[i]]. The
following for loop can take several minutes to run and its speed will depend on your network
connection and how responsive the web site is. Before running the entire for loop, it may be a
good idea to temporarily set the dates to a short period of time (e.g., a month or two) just to
verify that your code is functioning properly. Once you have concluded that the code is doing

10

what you want it to do, you can set the dates so that the for loop runs for the entire analysis
period.

This takes about an hour to pull all the data.

timeStart <- Sys.time() # record the starting time
for(iDate in 1:length(dates2scrape))
{

useful to know how much is done/left to go
message(dates2scrape[iDate])

construct URL
urlText <- paste0("https://www.the-numbers.com/box-office-chart/daily/",

gsub("-", "/", dates2scrape[iDate]))

read in the HTML code
a <- scan(urlText, what="", sep="\n", fileEncoding="UTF-8")

find movies
i <- grep("#tab=box-office", a)

get movie names and gross
data0 <- data.frame(movie = gsub("<[^>]*>", "", a[i]),

gross = as.numeric(gsub("<[^>]*>|[$,]","",a[i+2])),
date = dates2scrape[iDate])

replace empty movie names
j <- which(data0$movie=="")
data0$movie[j] <- gsub(".*/movie/([^#]*)#.*", "\\1", a[i[j]]) |>

gsub("-", " ", x=_)

results[[iDate]] <- data0
}
calculate how long it took
timeEnd <- Sys.time()
timeEnd-timeStart

Let’s look at the first 3 lines of the first and last 3 days.

first 6 rows of first 3 days
results |> head(3) |> lapply(head)

[[1]]

11

movie gross date
1 Avatar 25274008 2010-01-01
2 Sherlock Holmes 14889882 2010-01-01
3 Alvin and the Chipmunks: … 12998264 2010-01-01
4 It’s Complicated 7127425 2010-01-01
5 The Blind Side 4554779 2010-01-01
6 Up in the Air 4112263 2010-01-01

[[2]]
movie gross date

1 Avatar 25835551 2010-01-02
2 Sherlock Holmes 14373564 2010-01-02
3 Alvin and the Chipmunks: … 14373273 2010-01-02
4 It’s Complicated 7691535 2010-01-02
5 The Blind Side 4997659 2010-01-02
6 Up in the Air 4457565 2010-01-02

[[3]]
movie gross date

1 Avatar 17381129 2010-01-03
2 Alvin and the Chipmunks: … 7818116 2010-01-03
3 Sherlock Holmes 7349035 2010-01-03
4 It’s Complicated 3984005 2010-01-03
5 The Blind Side 2360311 2010-01-03
6 The Princess and the Frog 2264727 2010-01-03

first 6 rows of last 3 days
results |> tail(3) |> lapply(head)

[[1]]
movie gross date

1 The Fantastic Four: First… 14189835 2025-07-29
2 Superman 4288442 2025-07-29
3 Jurassic World Rebirth 2369215 2025-07-29
4 Smurfs 1416078 2025-07-29
5 Together 1300000 2025-07-29
6 F1: The Movie 1140072 2025-07-29

[[2]]
movie gross date

1 The Fantastic Four: First… 8657354 2025-07-30
2 Superman 2948138 2025-07-30

12

3 Together 2668751 2025-07-30
4 Jurassic World Rebirth 1661935 2025-07-30
5 Smurfs 986958 2025-07-30
6 F1: The Movie 858496 2025-07-30

[[3]]
movie gross date

1 The Fantastic Four: First… 7514899 2025-07-31
2 Superman 2665771 2025-07-31
3 The Bad Guys 2 2250000 2025-07-31
4 The Naked Gun 1600000 2025-07-31
5 Jurassic World Rebirth 1543785 2025-07-31
6 Together 1387751 2025-07-31

Looks like we got them all. Now let’s combine them into one big data frame. bind_rows()
takes a list of data frames, like results[[1]], results[[2]], …, and stacks them all on top
of each other.

movieData <- bind_rows(results)

check that the number of rows and dates seem reasonable
nrow(movieData)

[1] 223063

range(movieData$date)

[1] "2010-01-01" "2025-07-31"

head(movieData)

movie gross date
1 Avatar 25274008 2010-01-01
2 Sherlock Holmes 14889882 2010-01-01
3 Alvin and the Chipmunks: … 12998264 2010-01-01
4 It’s Complicated 7127425 2010-01-01
5 The Blind Side 4554779 2010-01-01
6 Up in the Air 4112263 2010-01-01

13

tail(movieData)

movie gross date
223058 Shoshana 4793 2025-07-31
223059 Ran 1878 2025-07-31
223060 Jane Austen Wrecked My Life 1132 2025-07-31
223061 Jujutsu Kaisen: Hidden In… 1019 2025-07-31
223062 Hearts of Darkness: A Fil… 997 2025-07-31
223063 Sovereign 156 2025-07-31

If you ran that for-loop to gather 15 years worth of data, most likely you walked away from
your computer to do something more interesting than watch its progress. In these situations,
I like to send myself a text message when it is complete. The emayili package is a convenient
way to send yourself an email or text. If you fill it in with your email, username, and gmail app
password, the following code will send you an email or text message when the script reaches
this point. (as of August 2025 I have not been able to get this to work)

library(emayili)

https://myaccount.google.com/apppasswords
get a 16 character "app password"
smtp <- server(host = "smtp.gmail.com",

port = 587,
username = "you@gmail.com",
password = "REPLACE WITH 16 CHARACTER APP PASSWORD",
starttls = TRUE,
use_ssl = FALSE)

Verizon: 5551234567@vtext.com
AT&T: 5551234567@txt.att.net
T-Mobile: 5551234567@tmomail.net
email <- envelope() |>

from("you@gmail.com") |>
to("5551234567@vtext.com") |>
text("Come back! Your movie data is ready!")

smtp(email, verbose = TRUE)

Note that the password here is in plain text so do not try this on a public computer. R also
saves your history so even if it is not on the screen it might be saved somewhere else on the
computer.

14

4 Parallel Computing

Since 1965 Moore’s Law has predicted the power of computation over time. Moore’s Law
predicted the doubling of transistors about every two years. Moore’s prediction has held
true for decades. However, to get that speed the transistors were made smaller and smaller.
Moore’s Law cannot continue indefinitely. The diameter of a silicon atom is 0.2nm. Transistors
today contain less than 70 atoms and some transistor dimensions are between 10nm and 40nm.
Since 2012, computing power has not changed greatly signaling that we might be getting close
to the end of Moore’s Law, at least with silicon-based computing. What has changed is the
widespread use of multicore processors. Rather than having a single processor, a typical laptop
might have an 8 or 16 core processor (meaning they have 8 or 16 processors that share some
resources like high speed memory).

R can guess how many cores your computer has on hand.

library(future)
library(doFuture)
parallelly::availableCores()

system
16

Having access to multiple cores allows you to write scripts that send different tasks to different
processors to work on simultaneously. While one processor is busy scraping the data for
January 1st, the second can get to work on January 2nd, and another can work on January
3rd. All the processors will be fighting over the one connection you have to the internet, but
they can grep() and gsub() at the same time other processors are working on other dates.

To write a script to work in parallel, you will need the foreach and future packages. Let’s first
test whether parallelization actually speed things up. There are two foreach loops below. In
both of them, each iteration of the loop does not really do anything except pause for 2 seconds.
The first loop, which does not use parallelization, includes 10 iterations and so should take
20 seconds to run. The second foreach loop looks the same, except right before the foreach
loop we have told R to make use of two of the computer’s processors rather than the default of
one processor. This should cause one processor to sleep for 2 seconds 10 times and the other
processor to sleep for 2 seconds 10 times. In total this should take about 10 seconds.

library(foreach)

should take 10*2=20 seconds
system.time(# time how long this takes
foreach(i=1:10) %do% # not in parallel

15

{
Sys.sleep(2) # wait for 2 seconds
return(i)

}
)

user system elapsed
0.02 0.00 20.37

set up R to use 2 cores
plan(multisession, workers = 2)
tells %dopar% to use the plan's 2 cores
registerDoFuture()

with two processors should take about 10 seconds
system.time(
foreach(i=1:10) %dopar% # run in parallel
{

Sys.sleep(2)
return(i)

}
)

user system elapsed
0.16 0.04 10.57

Sure enough, the parallel implementation was able to complete 20 seconds worth of sleep-
ing in about 10 seconds. To set up code to run in parallel, the key steps are to set up
the cores using plan() and to tell parallel foreach() to use that cluster of processors with
registerDoFuture(). Note that the key difference between the two foreach() statements
is that the first foreach() is followed by a %do% while the second is followed by a %dopar%.
When foreach() sees the %dopar% it will check what was set up in the registerDoFuture()
call and spread the computation among those cores.

Note that the foreach() differs a little bit in its syntax compared with our previous use of
for-loops. While for-loops have the syntax for(i in 1:10) the syntax for foreach() looks
like foreach(i=1:10) and is followed by a %do% or a %dopar%. Lastly, note that the final
step inside the { } following a foreach() is a return() statement. foreach() will take the
returned values of each of the iterations and assemble them into a single list by default. In the
following foreach() we have added .combine=bind_rows to the foreach() so that the final

16

results will be stacked into one data frame, avoiding the need for a separate bind_rows() like
we used previously.

Parallelization introduces some complications. If anything goes wrong in a parallelized script,
then the whole foreach() fails. For example, let’s say that after scraping movie data from
2000-2016 you briefly lose your internet connection. If this happens, then scan() fails and the
whole foreach() will end with an error, tossing all of your already complete computation. To
avoid this you need to either be sure you have a solid internet connection, or wrap the call to
scan() in a try() and a repeat loop that is smart enough to wait a few seconds and try the
scan again rather than fail completely.

This causes an error since this website does not exist (or not yet!).

res <- scan("http://www.jaywalkingIsNotACrime.org", what="", sep="\n")

Warning in file(file, "r"): URL 'http://www.jaywalkingIsNotACrime.org/': status
was 'Could not resolve hostname'

Error in file(file, "r"): cannot open the connection to 'http://www.jaywalkingIsNotACrime.org'

res does not exist
res

Error: object 'res' not found

If we wrap scan() with try(), then we can catch the error and write R code to gracefully
handle the problem.

res <- try(scan("http://www.jaywalkingIsNotACrime.org", what="", sep="\n"),
silent = TRUE) |>

suppressWarnings()
is(res)

[1] "try-error"

if(inherits(res, "try-error"))
{

message("Could not find that website")
} else
{

message("Found that website")
}

17

Could not find that website

With all this in mind, let’s web scrape the movie data using multiple cores with a
try()/repeat{}. Typically, any attempts to print from inside a parallel foreach() do not
appear in the console, since that print is running in a separate, parallel R session. The
progressr package offers a way to print a progress bar to the console that also offers an
estimated time to completion.

setup a Command-Line Interface progress bar
library(progressr)
handlers("cli")

plan(multisession, workers = 8)
registerDoFuture()

timeStart <- Sys.time() # record the starting time
wrap the foreach inside the progress monitor
movieData <- with_progress(
{

create a progress bar how many total steps in the foreach loop
p <- progressor(steps = length(dates2scrape))

result <- foreach(iDate=1:length(dates2scrape),
.combine = bind_rows) %dopar%

{
update progress bar
p(paste("Working on", dates2scrape[iDate]))
urlText <- paste0("https://www.the-numbers.com/box-office-chart/daily/",

gsub("-", "/", dates2scrape[iDate]))

retry up to 5 times with short backoff
tries <- 0
repeat
{

tries <- tries + 1
a <- try(scan(urlText, what = "", sep = "\n",

fileEncoding = "UTF-8", quiet = TRUE),
silent = TRUE)

if(!inherits(a, "try-error") || tries >= 5) break
Sys.sleep(10)

}
skip this date on persistent failure

18

if(inherits(a, "try-error")) return(NULL)

i <- grep("#tab=box-office", a)
data0 <- data.frame(movie = gsub("<[^>]*>", "", a[i]),

gross = as.numeric(gsub("<[^>]*>|[$,]","",a[i+2])),
date = dates2scrape[iDate])

replace empty movie names
j <- which(data0$movie=="")
data0$movie[j] <- gsub(".*/movie/([^#]*)#.*", "\\1", a[i[j]]) |>

gsub("-", " ", x=_)

return(data0)
}

the last object in with_progress() will be returned
result

})

calculate how long it took
timeEnd <- Sys.time()
timeEnd-timeStart

This code made use of 8 processors. Unlike our 2 second sleep example, this script may not
be exactly 8 times faster. Each processor still needs to wait its turn in order to pull down its
webpage from the internet. However, you should observe the parallel version finishing much
sooner than the first version. In just a few lines of code and about 10 minutes of waiting, you
now have 15 years worth of movie data.

Before moving on, let’s do a final check that everything looks okay.

nrow(movieData)

[1] 223063

range(movieData$date)

[1] "2010-01-01" "2025-07-31"

19

head(movieData)

movie gross date
1 Avatar 25274008 2010-01-01
2 Sherlock Holmes 14889882 2010-01-01
3 Alvin and the Chipmunks: … 12998264 2010-01-01
4 It’s Complicated 7127425 2010-01-01
5 The Blind Side 4554779 2010-01-01
6 Up in the Air 4112263 2010-01-01

tail(movieData)

movie gross date
223058 Shoshana 4793 2025-07-31
223059 Ran 1878 2025-07-31
223060 Jane Austen Wrecked My Life 1132 2025-07-31
223061 Jujutsu Kaisen: Hidden In… 1019 2025-07-31
223062 Hearts of Darkness: A Fil… 997 2025-07-31
223063 Sovereign 156 2025-07-31

Check for movie names with HTML codes.

movieData$movie |> grep("&[A-z]+;", x=_, value=TRUE) |> unique() |> head()

[1] "Alvin and the Chipmunks: …" "Did You Hear About the Mo…"
[3] "Precious (Based on the No…" "Cloudy with a Chance of M…"
[5] "The Boondock Saints 2: Al…" "The Imaginarium of Doctor…"

Those HTML characters in movie titles are annoying to look at. Let’s fix it now.

change HTML codes to something prettier
movieData <- movieData |>

mutate(movie = gsub("…", "...", movie))

It is probably wise at this point to save movieData so that you will not have to rerun this if
you mess up your dataset. With movieData saved you should feel free to test out your ideas.
You can always load("movieData.RData") if you make a mistake.

20

save(movieData, file="movieData.RData", compress=TRUE)

5 Fun With Movie Data

You can use the dataset to answer questions such as “which movie yielded the largest gross?”

movieData |> slice_max(gross)

movie gross date
1 Avengers: Endgame 157461641 2019-04-26

Which ten movies had the largest total gross during the period this dataset covers?

movieData |>
summarize(gross=sum(gross), .by=movie) |>
slice_max(gross, n=10)

movie gross
1 Star Wars Ep. VII: The Fo... 992642689
2 Avengers: Endgame 918373000
3 Spider-Man: No Way Home 854793477
4 Guardians of the Galaxy V... 783308916
5 Harry Potter and the Deat... 743512289
6 Top Gun: Maverick 738032821
7 Black Panther 725259566
8 Avengers: Infinity War 717815482
9 Avatar: The Way of Water 701075767
10 Deadpool & Wolverine 675245858

Which days of the week yielded the largest total gross?

movieData |>
mutate(weekday=wday(date, label=TRUE)) |>
summarize(gross=sum(gross), .by=weekday) |>
arrange(desc(gross))

21

weekday gross
1 Sat 39105939612
2 Fri 33286361375
3 Sun 27384146823
4 Thu 12532078590
5 Tue 12208580533
6 Mon 11613053523
7 Wed 10204176207

5.1 Inflation adjust

As you may have noticed, the price of a movie ticket keeps increasing. the-numbers.com keeps
track of the average movie ticket price, which we can use to create a movie-specific inflation
factor. Let’s scrape the average ticket price from https://www.the-numbers.com/market/
and compute an inflation adjustment factor. That factor will vary by year. It will tell you how
much you need to multiply, say, a ticket purchased in 2010 so that it equates to 2025 prices.

a <- scan("https://www.the-numbers.com/market/",
what="", sep="\n")

i <- grep("Ticket Price|Number of Wide Releases", a)
a <- a[i[1]:i[2]]
i <- grep("market",a)
inflation <- data.frame(year = gsub("<[^>]*>","",a[i]),

avgPrice = gsub("<[^>]*>|\\$","",a[i+4])) |>
mutate(year = as.numeric(year),

avgPrice = as.numeric(avgPrice),
adjustment = avgPrice[1]/avgPrice) |>

filter(year >= 2010)

inflation

year avgPrice adjustment
1 2025 11.31 1.000000
2 2024 11.31 1.000000
3 2023 10.94 1.033821
4 2022 10.53 1.074074
5 2021 10.17 1.112094
6 2020 9.18 1.232026
7 2019 9.16 1.234716
8 2018 9.11 1.241493
9 2017 8.97 1.260870
10 2016 8.65 1.307514

22

https://www.the-numbers.com/market/

11 2015 8.43 1.341637
12 2014 8.17 1.384333
13 2013 8.13 1.391144
14 2012 7.96 1.420854
15 2011 7.93 1.426230
16 2010 7.89 1.433460

Now we link each movie to our inflation factor table to compute ticket sales adjusted to 2025
prices.

movieData <- movieData |>
mutate(year=year(date)) |>
left_join(inflation, join_by(year==year)) |>
mutate(grossAdj=gross*adjustment) |>
select(-avgPrice, -adjustment)

movieData |>
summarize(grossAdj=sum(grossAdj), .by=movie) |>
slice_max(grossAdj, n=10)

movie grossAdj
1 Star Wars Ep. VII: The Fo... 1322086438
2 Avengers: Endgame 1133929981
3 Harry Potter and the Deat... 1062618923
4 Spider-Man: No Way Home 941797593
5 The Avengers 906147264
6 The Twilight Saga: Breaki... 902658283
7 Guardians of the Galaxy V... 902167478
8 Black Panther 900404576
9 Jurassic World 899833273
10 Avengers: Infinity War 891162799

Twilight joins the top 10 list. However, Twilight and Potter fans in previous classes have
pointed out that Twilight: Breaking Dawn and Harry Potter and the Deathly Hallows were
broken up into two movies. Because the-numbers.com truncates the movie titles with …, R
has lumped Part 1 and Part 2 together for both of these movies. Sure, we could look up when
those open nights were, but let’s try using the data instead.

movieData |>
filter(movie=="Harry Potter and the Deat...") |>
summarize(gross = sum(gross)/1000000, # gross in millions

23

.by = date) |>
plot(gross~date, data=_,

xlab="Date", ylab="Gross (millions of dollars)")
abline(v=ymd(c("2010-11-19", "2011-07-15")))

Figure 1: Daily gross for Harry Potter and the Deathly Hallows

movieData |>
filter(movie=="The Twilight Saga: Breaki...") |>
summarize(gross = sum(gross)/1000000, .by = date) |>
plot(gross~date, data=_,

xlab="Date", ylab="Gross (millions of dollars)")
abline(v=ymd(c("2011-11-18", "2012-11-16")))

24

Figure 2: Daily gross for The Twilight Saga: Breaking Dawn

In both of these figures we see the enormous ticket sales in the first several days followed by a
steady decline over the subsequent months. Then, another large spike in ticket sales indicating
a second installment. When we find a large spike in ticket sales, we will mark that as indicating
the second part. For each movie, here are the four days with the largest jumps in ticket sales
from the day before.

movieData |>
filter(movie %in% c("Harry Potter and the Deat...",

"The Twilight Saga: Breaki...")) |>
summarize(gross = sum(gross), # total sales by date and movie

.by=c(movie, date)) |>
group_by(movie) |> # now find large change within movie
arrange(movie, date) |>
mutate(change = gross - lag(gross), # lag is NA for 1st one

change = if_else(is.na(change), Inf, change)) |>
find the largest jumps in sales
slice_max(change, n=4)

A tibble: 8 x 4
Groups: movie [2]

25

movie date gross change
<chr> <date> <dbl> <dbl>

1 Harry Potter and the Deat... 2010-11-18 24000000 Inf
2 Harry Potter and the Deat... 2011-07-15 91071119 47571119
3 Harry Potter and the Deat... 2011-07-14 43500000 43495044
4 Harry Potter and the Deat... 2010-11-19 61684550 37684550
5 The Twilight Saga: Breaki... 2011-11-17 30250000 Inf
6 The Twilight Saga: Breaki... 2011-11-18 71642526 41392526
7 The Twilight Saga: Breaki... 2012-11-16 71167839 40767839
8 The Twilight Saga: Breaki... 2012-11-15 30400000 30396087

If there are several days close together, like 2011-07-14 and 2011-07-15, then we should only
keep the earlier one… the first big jump.

part2date <- movieData |>
filter(movie %in% c("Harry Potter and the Deat...",

"The Twilight Saga: Breaki...")) |>
summarize(gross = sum(gross), # total sales by date and movie

.by=c(movie, date)) |>
group_by(movie) |> # now find large change within movie
arrange(movie, date) |>
mutate(change = gross - lag(gross), # lag is NA for 1st one

change = if_else(is.na(change), Inf, change)) |>
find the largest jumps in sales
slice_max(change, n=4) |>
arrange(movie, date) |>
keep the first of any dates close to each other
mutate(diffDays = date - lag(date)) |>
filter(is.na(diffDays) | diffDays > 60) |>
one with later date is Part 2
slice_max(date) |>
ungroup() |>
rename(date2 = date) |>
select(movie, date2)

Before altering movieData, let’s make sure we get this join right.

test the merge
movieData |>

left_join(part2date,
join_by(movie == movie)) |>

mutate(moviePart =

26

case_when(
use three days before Part 2 as cutoff
!is.na(date2) & date < date2 - ddays(3) ~ "Part 1",
!is.na(date2) & date > date2 - ddays(3) ~ "Part 2",
.default = "")) |>

filter(movie %in% c("Harry Potter and the Deat...",
"The Twilight Saga: Breaki...")) |>

select(movie, gross, date, moviePart) |>
group_by(movie, moviePart) |>
slice_head()

A tibble: 4 x 4
Groups: movie, moviePart [4]
movie gross date moviePart
<chr> <dbl> <date> <chr>

1 Harry Potter and the Deat... 24000000 2010-11-18 Part 1
2 Harry Potter and the Deat... 43500000 2011-07-14 Part 2
3 The Twilight Saga: Breaki... 30250000 2011-11-17 Part 1
4 The Twilight Saga: Breaki... 30400000 2012-11-15 Part 2

Great! Looks like the moviePart has the right values given the dates. Now we can paste the
Part 1 and Part 2 on the end of the movie name.

movieData <- movieData |>
left_join(part2date,

join_by(movie == movie)) |>
mutate(moviePart =

case_when(
use three days before Part 2 as cutoff
!is.na(date2) & date < date2 - ddays(3) ~ "Part 1",
!is.na(date2) & date > date2 - ddays(3) ~ "Part 2",
.default = ""),

movie = paste0(movie, moviePart)) |>
select(-date2, -moviePart)

Now we can redo our list of top 10 movies by inflation-adjusted gross. No Harry Potter or
Twilight anymore.

movieData |>
summarize(grossAdj=sum(grossAdj), .by=movie) |>
slice_max(grossAdj, n=10)

27

movie grossAdj
1 Star Wars Ep. VII: The Fo... 1322086438
2 Avengers: Endgame 1133929981
3 Spider-Man: No Way Home 941797593
4 The Avengers 906147264
5 Guardians of the Galaxy V... 902167478
6 Black Panther 900404576
7 Jurassic World 899833273
8 Avengers: Infinity War 891162799
9 The Hunger Games: Mocking... 888246195
10 Star Wars Ep. VIII: The L... 836711876

They have moved far down the list of highest grossing movies.

movieData |>
summarize(grossAdj=sum(grossAdj), .by=movie) |>
mutate(rank = rank(-grossAdj)) |> # ranks so 1 is largest grossAdj
filter(grepl("Harry Potter and the Deat...|The Twilight Saga: Breaki...",

movie))

movie grossAdj rank
1 Harry Potter and the Deat...Part 1 457168496 61
2 Harry Potter and the Deat...Part 2 605450427 27
3 The Twilight Saga: Breaki...Part 1 444288808 67
4 The Twilight Saga: Breaki...Part 2 458369475 59

Are there other movies that have multiple parts that we have lumped together? Let’s search
for other large jumps in ticket sales.

movieJumps <- movieData |>
summarize(gross = sum(gross), .by = c(movie, date)) |>
arrange(movie, date) |>
group_by(movie) |>
mutate(prev_gross = lag(gross),

prev_gross = if_else(is.na(prev_gross), 0, prev_gross),
change = gross - prev_gross,
NA -> first appearance
change = if_else(is.na(change), Inf, change),
pct_change = 100*change / pmax(prev_gross, 1)) |> # guard div-by-zero

filter(!is.na(change), change > 0)

28

movieJumps |>
group_by(movie) |>
slice_max(change, n=10, with_ties = FALSE) |>
arrange(movie, date) |>
mutate(diffDays = date - lag(date)) |>
filter(is.na(diffDays) | diffDays > 30) |>
summarize(first_date = min(date),

second_date = max(date),
sep_days = as.integer(diff(range(date))),
min_top_pct = min(pct_change),
max_top_abs = max(change)) |>

ungroup() |>
filter(sep_days >= 100, # spikes 100+ days apart

min_top_pct >= 100, # jump at least 100%
max_top_abs >= 1000000) |> # jump at least $1m

arrange(desc(min_top_pct)) |>
print(n=Inf)

A tibble: 24 x 6
movie first_date second_date sep_days min_top_pct max_top_abs
<chr> <date> <date> <int> <dbl> <dbl>

1 Together 2021-08-27 2025-07-29 1432 2548920. 1299949
2 Guardians of the Gal~ 2017-05-04 2023-05-04 2191 673236. 17497401
3 Unplanned 2019-03-28 2019-07-12 106 372778. 1500000
4 Every Day 2011-01-14 2018-02-23 2597 350000 1089991
5 Teenage Mutant Ninja~ 2016-06-02 2023-08-01 2616 240826. 3848402
6 The Hunger Games: Mo~ 2014-11-20 2015-11-19 364 183660. 17000000
7 Alvin and the Chipmu~ 2010-01-01 2015-12-18 2177 176482. 12998264
8 The Way Back 2011-01-21 2020-03-06 3332 73685. 2613600
9 Dune 2021-10-21 2024-02-09 841 36722. 5100000
10 Dunkirk (2017) (Re-R~ 2017-12-01 2018-04-11 131 33884. 1690131
11 Spider-Man: No Way H~ 2022-09-02 2024-06-03 640 31247. 1754503
12 Weathering With You 2020-01-15 2021-07-25 557 26449. 1594427
13 Robin Hood 2010-05-14 2018-11-21 3113 24826. 13031160
14 How to Train Your Dr~ 2010-03-26 2025-06-12 5557 21999. 12111766
15 Paranormal Activity:~ 2014-01-02 2015-10-22 658 19149. 1200000
16 Demon Slayer The Mov~ 2021-04-22 2025-05-14 1483 14763. 3800000
17 The Lion King 2011-09-16 2019-07-18 2862 10800. 22788993
18 Pirates of the Carib~ 2011-05-20 2017-05-25 2197 9873. 34860549
19 The Mummy 2017-06-08 2024-04-26 2514 4700. 2700000
20 Scott Pilgrim vs. Th~ 2010-08-13 2021-04-30 3913 4269. 4522890
21 Memory 2022-04-29 2024-01-05 616 2056. 1110563

29

22 Ghost in the Shell 2017-03-30 2021-09-17 1632 1265. 1800000
23 The Nightmare Before~ 2020-10-16 2024-10-11 1456 487. 1369530
24 Christmas with the C~ 2021-12-01 2023-12-15 744 150 2700000

Looks like several more movies need parts added to them. The Hunger Games: Mockingjay
had two parts. Guardians of the Galaxy had Volume 1, 2, and 3 (first one was simply Guardians
of the Galaxy). Teenage Mutant Ninja Turtles was released in 2014, Teenage Mutant Ninja
Turtles: Out of the Shadows was released in 2016, and Teenage Mutant Ninja Turtles: Mutant
Mayhem was released in 2023 (more planned for 2027!). There have been five Pirates of the
Caribbean movies, two of which were released after 2010. Robin Hood is two different movies
with the same title, one starring Russell Crowe and another starring Taron Egerton. Some we
can safely ignore, such as the re-releases.

toFix <- c("Guardians of the Galaxy V...",
"Teenage Mutant Ninja Turt...",
"The Hunger Games: Mocking...",
"Alvin and the Chipmunks: ...",
"Paranormal Activity: The ...",
"Pirates of the Caribbean:...",
"Robin Hood",
"How to Train Your Dragon",
"The Lion King",
"The Way Back",
"Together",
"Every Day")

partDates <- movieData |>
filter(movie %in% toFix) |>
summarize(gross = sum(gross), .by=c(movie, date)) |>
arrange(movie, date) |>
group_by(movie) |>
mutate(change = gross - lag(gross),

change NA means first date ever
change = if_else(is.na(change), Inf, change)) |>

slice_max(change, n=4) |>
arrange(movie, date) |>
mutate(daysDiff = as.numeric(date-lag(date))) |>
choose first date and dates separated 30+ days
filter(is.na(daysDiff) | (daysDiff>30)) |>
mutate(start = date-ddays(3),

end = lead(date, default = ymd("2100-01-01"))-ddays(3),
year = year(date)) |>

30

ungroup() |>
Alvin opened in December 2009
mutate(start = if_else(start <= "2010-01-31",

ymd("2010-01-01"),
start))

partDates |> print(n=Inf)

A tibble: 25 x 8
movie date gross change daysDiff start end year
<chr> <date> <dbl> <dbl> <dbl> <date> <date> <dbl>

1 Alvin and th~ 2010-01-01 1.30e7 Inf NA 2010-01-01 2011-12-13 2010
2 Alvin and th~ 2011-12-16 6.71e6 6704426 706 2011-12-13 2015-12-15 2011
3 Alvin and th~ 2015-12-18 4.13e6 4124380 1463 2015-12-15 2099-12-29 2015
4 Every Day 2011-01-14 3.5 e3 Inf NA 2011-01-11 2018-02-20 2011
5 Every Day 2018-02-23 1.09e6 1089991 2597 2018-02-20 2099-12-29 2018
6 Guardians of~ 2017-05-04 1.7 e7 Inf NA 2017-05-01 2023-05-01 2017
7 Guardians of~ 2023-05-04 1.75e7 17497401 2190 2023-05-01 2099-12-29 2023
8 How to Train~ 2010-03-26 1.21e7 Inf NA 2010-03-23 2025-06-09 2010
9 How to Train~ 2025-06-12 1.11e7 11049771 5550 2025-06-09 2099-12-29 2025
10 Paranormal A~ 2014-01-02 1.20e6 Inf NA 2013-12-30 2015-10-20 2014
11 Paranormal A~ 2015-10-23 3.30e6 2702140 651 2015-10-20 2099-12-29 2015
12 Pirates of t~ 2011-05-20 3.49e7 Inf NA 2011-05-17 2017-05-22 2011
13 Pirates of t~ 2017-05-25 5.50e6 5444849 2190 2017-05-22 2099-12-29 2017
14 Robin Hood 2010-05-14 1.30e7 Inf NA 2010-05-11 2018-11-18 2010
15 Robin Hood 2018-11-21 3.16e6 3146644 3105 2018-11-18 2099-12-29 2018
16 Teenage Muta~ 2016-06-02 2 e6 Inf NA 2016-05-30 2023-07-30 2016
17 Teenage Muta~ 2023-08-02 1.02e7 6352275 2616 2023-07-30 2099-12-29 2023
18 The Hunger G~ 2014-11-20 1.7 e7 Inf NA 2014-11-17 2015-11-16 2014
19 The Hunger G~ 2015-11-19 1.6 e7 15991293 363 2015-11-16 2099-12-29 2015
20 The Lion King 2011-09-16 8.92e6 Inf NA 2011-09-13 2019-07-15 2011
21 The Lion King 2019-07-18 2.3 e7 22788993 2862 2019-07-15 2099-12-29 2019
22 The Way Back 2011-01-21 3.90e5 Inf NA 2011-01-18 2020-03-03 2011
23 The Way Back 2020-03-06 2.62e6 2613600 3332 2020-03-03 2099-12-29 2020
24 Together 2021-08-27 3.54e4 Inf NA 2021-08-24 2025-07-26 2021
25 Together 2025-07-29 1.3 e6 1299949 1428 2025-07-26 2099-12-29 2025

movieData <- movieData |>
select(-year) |>
left_join(partDates |> select(-date, -gross, -change, -daysDiff),

join_by(movie,
date >=start,

31

date < end)) |>
mutate(moviePart = if_else(!is.na(year),

paste0("(",year,")"),
""),

movie = paste0(movie, moviePart)) |>
select(-start, -end, -year, -moviePart)

As always, double check that the new movie names seem to be labeled in the correct years.

movieData |>
filter(gsub("\\([0-9]{4}\\)", "", movie) %in% toFix) |>
mutate(year = year(date)) |>
select(movie, year) |>
distinct() |>
arrange(movie)

movie year
1 Alvin and the Chipmunks: ...(2010) 2010
2 Alvin and the Chipmunks: ...(2011) 2011
3 Alvin and the Chipmunks: ...(2011) 2012
4 Alvin and the Chipmunks: ...(2015) 2015
5 Alvin and the Chipmunks: ...(2015) 2016
6 Every Day(2011) 2011
7 Every Day(2018) 2018
8 Guardians of the Galaxy V...(2017) 2017
9 Guardians of the Galaxy V...(2023) 2023
10 How to Train Your Dragon(2010) 2010
11 How to Train Your Dragon(2025) 2025
12 Paranormal Activity: The ...(2014) 2014
13 Paranormal Activity: The ...(2015) 2015
14 Pirates of the Caribbean:...(2011) 2011
15 Pirates of the Caribbean:...(2017) 2017
16 Robin Hood(2010) 2010
17 Robin Hood(2018) 2018
18 Robin Hood(2018) 2019
19 Teenage Mutant Ninja Turt...(2016) 2016
20 Teenage Mutant Ninja Turt...(2023) 2023
21 The Hunger Games: Mocking...(2014) 2014
22 The Hunger Games: Mocking...(2014) 2015
23 The Hunger Games: Mocking...(2015) 2015
24 The Hunger Games: Mocking...(2015) 2016

32

25 The Lion King(2011) 2011
26 The Lion King(2019) 2019
27 The Lion King(2019) 2024
28 The Way Back(2011) 2011
29 The Way Back(2020) 2020
30 Together(2021) 2021
31 Together(2025) 2025

Let’s save our final movie dataset with inflation-adjusted gross and corrected movie titles.

save(movieData, file="movieDataFinal.RData", compress=TRUE)

Now that you have movie data and in a previous section you assembled Chicago crime data,
combine the two datasets so that you can answer the question “what happens to crime when
big movies come out?”

33

	Introduction
	Scraping one page
	Movies with no titles

	Scraping Multiple Pages
	Parallel Computing
	Fun With Movie Data
	Inflation adjust

