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Abstract—We estimate how the mortality effects of temperature vary across
U.S. climate regions to assess local and national damages from projected
climate change. Using 22 years of Medicare data, we find that both cold
and hot days increase mortality. However, hot days are less deadly in warm
places while cold days are less deadly in cool places. Incorporating this
heterogeneity into end-of-century climate change assessments reverses the
conventional wisdom on climate damage incidence: cold places bear more,
not less, of the mortality burden. Allowing places to adapt to their fu-
ture climate substantially reduces the estimated mortality effects of climate
change.

I. Introduction

THE prospect of rising global temperatures over the
twenty-first century has focused attention on under-

standing how climate change affects human well-being and
whether adaptation or mitigation strategies can offset its
harmful effects (IPCC, 2014). One common approach to es-
timating climate change effects is to first estimate economic
damages due to weather and then calculate climate damages
using shifts in the future weather distribution predicted by cli-
mate models (Deschênes & Greenstone, 2011). Applications
of this approach have generally assumed that the relationship
between weather and mortality is uniform across regions and
constant over time. For example, Hsiang et al. (2017) es-
timate that excess mortality will account for about 70% of
end-of-century (2080–2099) climate damages in the United
States and that northern, cooler regions will generally bear
lower mortality costs from climate change than warmer re-
gions. However, both the overall magnitude and geographic
distribution of climate damages could deviate substantially
from these predictions if the mortality effects of weather vary
geographically or if places adapt to their future climate.

In this paper, we estimate how the mortality effects of
temperature vary across U.S. climate regions and use these
estimates to predict local and national end-of-century cli-
mate change impacts on U.S. elderly mortality. We assess
climate change impacts for three cases: assuming homoge-
neous effects of temperature across regions, incorporating
heterogeneity in a region’s current temperature-mortality re-
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lationship, and allowing for both current heterogeneity and
future adaptation. Our analysis leverages Medicare adminis-
trative data on dates of death and ZIP codes of residence for all
elderly U.S. beneficiaries from 1992 to 2013, daily weather
monitor readings, and end-of-century climate change predic-
tions from 21 climate models and two emissions scenarios.

Our analysis proceeds in two parts. First, we conduct a
nonparametric analysis aimed at establishing the extent to
which mortality effects of temperature vary across climate
regions. While both hot and cold days increase mortality, on
average, relative to a moderate day, we find that hot days are
much deadlier in cool regions than in warm ones. The reverse
is true for cold days. This heterogeneity implies that absent
future adaptation, a warming climate will increase mortality
more in cool places—and less in warm places—than would
be implied by homogeneous temperature effects. In addition,
these results suggest that attempts to account for adaptation
to hot weather under a warming climate must also account for
the potential for regions to simultaneously de-adapt to cold
weather.

Second, we assess the mortality effects of projected end-
of-century climate change. Informed by our heterogeneity
analysis, we first estimate the mortality effects of temper-
ature as a smooth, semiparametric function of temperature
and local (ZIP code level) climate. We then calculate climate
damages for each ZIP code by combining temperature ef-
fects with projected shifts in the future weather distribution
for each ZIP code. This approach allows us to model both
heterogeneity in the current temperature-mortality relation-
ship based on a region’s historical climate and the potential
for the region to adapt to its future climate.

We find that accounting for heterogeneity and adapta-
tion substantially influences the sign, magnitude, and geo-
graphic distribution of predicted climate damages relative to
a conventional approach that assumes homogeneous current
temperature effects and no future adaptation. Using the con-
ventional approach, we predict an overall increase in elderly
mortality of 0.76%, with warm regions bearing larger bur-
dens and cool regions benefiting from mortality reductions,
similar to conclusions by Houser et al. (2014) and Hsiang
et al. (2017). However, accounting for heterogeneous current
temperature effects implies a much larger aggregate mortality
increase of 2.15% and reverses the distribution of predicted
climate damages: cold places bear more, not less, of the mor-
tality burden.

Further allowing places to adapt to their future climate
yields mortality effects of climate change that are systemat-
ically lower than estimates that do not allow for adaptation.
When we account for both current heterogeneity and future
adaptation, we estimate an overall decrease in U.S. elderly
mortality of approximately 0.53% by the end of the century,

The Review of Economics and Statistics, October 2021, 103(4): 740–753
© 2020 by the President and Fellows of Harvard College and the Massachusetts Institute of Technology
https://doi.org/10.1162/rest_a_00936

D
ow

nloaded from
 http://direct.m

it.edu/rest/article-pdf/103/4/740/1965298/rest_a_00936.pdf?casa_token=gJ5m
3an_stAAAAAA:sdSN

N
2G

fXZq95Xqw
TJO

jK27TefR
JiM

z9B60Ko9LnAkAKBeSh0PoKeVC
5qeC

vLLXL1U
ip5O

9lC
w

 by IN
D

IAN
A U

N
IV LIBR

AR
IES user on 17 July 2022

https://doi.org/10.1162/rest_a_00936
https://doi.org/10.1162/rest_a_00936


ADAPTATION, TEMPERATURE, AND U.S. MORTALITY EFFECTS 741

compared to the overall mortality increase of 2.15% for the
case of heterogeneous effects with no adaptation. This find-
ing is best interpreted as quantifying the potential scope for
adaptation to future climate change using currently available
technologies that regions have found worthwhile to adopt
given historical costs and their current climates. Because we
model neither the future cost of adaptation nor the nonmortal-
ity effects of climate change on elderly welfare, our findings
do not imply that climate change will necessarily improve
elderly well-being.

Our paper contributes to a growing literature that explores
adaptation to climate change.1 Methodologically, the studies
most closely related to ours are Butler and Huybers (2013)
and Auffhammer (2017), which use a similar approach to con-
sider regional adaptation in maize production and in energy
use, respectively. In contemporaneous work, Portnykh (2017)
considers weather, adaptation, and mortality using Russian
data. Our paper also contributes to studies of how the mor-
tality effects of temperature vary across climate regions. For
example, Curriero et al. (2002) and Barreca et al. (2016) find
that cold days tend to have larger effects in southern climates,
while hot days tend to have larger effects in northern climates.
Barreca et al. (2015) more thoroughly examine how the mor-
tality impacts of hot days vary across U.S. states according
to the frequency at which they occur.

Our work expands on these studies in three primary ways.
First, we use more spatially and temporally granular data
spanning the United States to characterize graphically, and
in a statistically precise way, how the entire temperature-
mortality relationship varies with local climate. This is impor-
tant because climate change can affect the likelihood of both
hot and cold days, varying by region. Second, we combine
climate-specific temperature effects with location-specific
climate change projections to predict end-of-century climate
damages both locally and in aggregate. Third, we predict the
scope for adaptation to climate change using cross-sectional
heterogeneity in the observed temperature-mortality relation-
ship, simultaneously accounting for adaptation to heat and
possible deadaptation to the cold.

The remainder of this paper proceeds as follows. Section II
describes our data. In section III, we estimate climate-specific
temperature-mortality relationships. Section IV makes pre-
dictions of long-run climate change–induced mortality, with
and without climate-based regional heterogeneity and with
and without adaptation. Section V concludes.

II. Data

A. Data Description

Our analysis leverages a novel combination of three pri-
mary data sources: daily weather monitor readings from

1Kahn (2016) and Massetti and Mendelsohn (2018) review the climate
adaptation literature. Deschênes (2014) reviews the empirical literature on
temperature, human health, and adaptation.

the National Oceanic and Atmospheric Administration’s
(NOAA) Global Historical Climate Network (GHCN), el-
derly mortality and place of residence from Medicare admin-
istrative data, and climate projections from the NASA Earth
Exchange Global Daily Downscaled Projections (NEX-
GDDP). We briefly describe the weather and mortality data
and variable construction in this section. Section IV.A de-
scribes the climate model projections. Appendix section A.1
provides more detailed data descriptions.

The primary geographic units for our analysis are ZIP
codes, as defined by the 2010 U.S. Census Bureau’s ZIP Code
Tabulation Areas (ZCTAs). ZCTAs aggregate census blocks
to form real representations of U.S. Postal Service (USPS)
ZIP code mail delivery routes. For most areas, the ZCTA code
is the same as the USPS ZIP code.

We obtain daily minimum and maximum temperatures
from NOAA’s GHCN database, which provides climate sum-
maries for weather stations across the fifty U.S. states, the
District of Columbia, and Puerto Rico. For each ZIP code,
we construct daily high and low temperatures as the inverse
distance-weighted average of all available maximum and
minimum temperatures, respectively, for monitors within 20
miles of the ZIP code centroid, following the monitor aggre-
gation method used by Currie and Neidell (2005) and Beatty
and Shimshack (2014). The daily average temperature is de-
fined as the midpoint of the daily high and low temperatures.2

We categorize ZIP codes into climate regions based on their
cooling degree days (CDD), derived from NOAA’s 1981–
2010 Climate Normals for U.S. weather stations. CDD are
based on daily average temperatures and are designed to re-
flect the energy needed to cool a building to a base temper-
ature, typically 65◦F. For example, one day with an average
temperature of 75◦F represents 10 CDD, while a day with
temperatures below the base temperature represents 0 CDD.
A weather station’s CDD Normal is a three-decade average
of its annual CDD, which is the sum of daily CDD values
across all days in the year. The CDD Normal for a ZIP code
is the inverse distance-weighted average of CDD Normals at
the nearest weather station and any other stations within a
20-mile radius of the ZIP code centroid.

Finally, we measure mortality using Medicare enrollment
files from 1992 to 2013. These files provide demographic
data on all individuals eligible for Medicare in each year,
including date of birth, date of death, and ZIP code of resi-
dence. We restrict our sample to elderly beneficiaries aged 65
to 100, who represent over 97% of the U.S. elderly resident
population (appendix figure B.1). We define daily mortality
for a ZIP code as those who die within a given time period
(e.g., within three days of the index date) as a fraction of all

2Another source of daily weather data comes from the PRISM Climate
Group, which produces spatially interpolated data at a 4 km resolution.
Because PRISM data are only available for the conterminous United States,
we use the GHCN weather data for our main analysis. We also construct
daily ZIP code weather based on PRISM data (appendix section A.1) and
show in appendix section A.2 that results based on PRISM weather data are
qualitatively similar to those based on GHCN data.
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742 THE REVIEW OF ECONOMICS AND STATISTICS

FIGURE 1.—U.S. DAILY AVERAGE TEMPERATURE DISTRIBUTION

This figure summarizes the distribution of daily average temperature in the United States from 1992 to 2013. Distributions are reported separately for the entire United States and for the coolest, middle, and warmest
population-weighted thirds of ZIP codes based on CDD Climate Normals. Daily temperature data come from the Global Historical Climatology Network land surface station database. Appendix tables B.1a and B.1b
report numerical values of the points in this figure.

beneficiaries residing in the ZIP code who were alive and
eligible for Medicare as of the index date.

B. Summary Statistics

The primary sample for our analysis contains 32,860 ZIP
codes, yielding over 250 million ZIP-code-day observations
over the sample period (1992–2013). Appendix figure B.2
shows how climate varies across the sample. The Medi-
care population-weighted average ZIP code CDD Normal
is 1,404. The coolest third of ZIP codes have fewer than 787
CDD, with some parts of Alaska and Colorado having 0 CDD,
as the average temperature never exceeds 65◦F. The warmest
third of ZIP codes have at least 1,442 CDD, with some very
hot ZIP codes in Arizona, California, Florida, and Puerto
Rico exceeding 4,500 CDD.

Figure 1 summarizes the distribution of realized tempera-
ture over the sample across each of nineteen temperature bins
ranging in 5◦F increments from less than 10◦F to more than
95◦F. The shaded region presents the distribution of daily
average temperature for the United States as a whole, while
line plots report the distribution separately for the coolest,
middle, and warmest thirds of U.S. ZIP codes.

Appendix tables B.1a and B.1b summarize daily mortal-
ity by temperature bin for each of the three climate terciles
and for the United States as a whole, respectively. Average
three-day mortality was 39.4 deaths per 100,000 beneficia-
ries, corresponding to an annual mortality rate of 4.8%. How-
ever, mortality was systematically lower on warmer ZIP code
days, with the lowest three-day mortality rate of 35 deaths
per 100,000 occurring after days with average temperatures
above 95◦F. A naive interpretation of this pattern is that re-

placing cool days with very hot days reduces mortality. Yet
this conclusion could be flawed either because hot days tend
to occur during the summer, confounding the temperature ef-
fect with seasonality, or because the population residing in
regions where hot days occur most often differs systemati-
cally from cooler regions. The richness of our data allows us
to address these potential confounders by controlling flexibly
for both location and seasonality.

III. Heterogeneous Mortality Effects of Temperature

In this section, we examine the extent to which the mor-
tality effects of temperature vary across climate regions. For
this analysis, we define climate regions as the coolest, middle,
and warmest population-weighted third of ZIP codes based
on CDD Normals. We then nonparametrically estimate the
temperature-mortality relationship for each climate tercile.

A. Empirical Strategy

We use year-over-year variation in daily temperature to
identify the causal effect of temperature on mortality, inspired
by the approach of Deschênes and Greenstone (2011). Our
analysis uses daily observations of mortality and tempera-
ture at the ZIP code level. Our primary outcome of interest,
mortalityzd , is the number of deaths per 100,000 beneficia-
ries in ZIP code z within three days after index day d.3 Our

3Using a postevent window captures possible lags in mortality effects and
near-term mortality displacement (harvesting). Appendix figure B.4 shows
results for mortality windows of up to 28 days after the index day. We do
not observe harvesting at either very hot or very cold temperatures when
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ADAPTATION, TEMPERATURE, AND U.S. MORTALITY EFFECTS 743

estimating equation is

mortalityzd =
∑

b∈B\{65−70}
βcool

b tempbinb
zd

× 1 (ZIP z in coolest third of regions)

+
∑

b∈B\{65−70}
βmid

b tempbinb
zd

× 1 (ZIP z in middle third of regions)

+
∑

b∈B\{65−70}
βhot

b tempbinb
zd

× 1 (ZIP z in warmest third of regions)

+ ZipDayzd + Lzd + StYrzd + εzd . (1)

The primary independent variables of interest in equa-
tion (1) are temperature indicators tempbinb

zd defined by
which of the nineteen temperature bins b ∈ B = {< 10, 10 −
15, . . . , 90 − 95, > 95}, the average temperature in ZIP code
z falls in on day d. The temperature bins are then interacted
with indicators for the climate tercile containing the ZIP code.
This specification allows for arbitrary nonlinearities in the
relationship between temperature and mortality and further
allows this relationship to vary arbitrarily by climate region.

Because equation (1) includes ZIP code fixed effects, the
coefficients on the set of temperature indicators for each cli-
mate region are only identified up to a common constant
(i.e., a vertical shift in the temperature-mortality relation-
ship). This corresponds to arbitrarily omitting one tempera-
ture bin in the regression, which we choose to be the 65◦F
to 70◦F bin. As a result, the coefficients βc

b describe the mor-
tality effect in climate region c of replacing a day with an
average temperature in bin b with a 65◦F to 70◦F day. Identi-
fication up to a common constant also implies that all state-
ments we make about heterogeneous treatment effects reflect
differences in the curvature of the temperature-mortality re-
lationship, not differences in mortality levels across regions.

We identify the effects of temperature on mortality by iso-
lating year-over-year variation in temperature and mortality,
controlling for both geography and seasonality using fixed
effects ZipDayzd for each ZIP code and day-of-year combi-
nation. This control strategy accounts for seasonal mortality
patterns that may vary by ZIP code, such as elevated winter
mortality and reduced summer mortality. To account for se-
rial correlation in daily temperature and potentially lagged
mortality effects, Lzd includes three fully interacted sets of 5
degree average temperature bins for the preceding two and six
days and the subsequent two days, which are further allowed
to vary by climate tercile. Finally, we include state-by-year
fixed effects, StYrzd , to control for arbitrary annual shocks
that may vary by state, such as changes to Medicare or Med-

extending the mortality window beyond three days, and therefore we focus
our primary analysis on three-day mortality.

icaid policy. All regressions are weighted by the ZIP code’s
Medicare population. We two-way-cluster standard errors at
the county and state-date levels to allow for arbitrary correla-
tions within groups of nearby ZIP codes over time and across
all ZIP codes in the state at a particular point in time.

B. Results

Figure 2a depicts results from estimating equation (1) with
three-day mortality as the outcome. Markers with whisker
lines plot the nonparametric temperature bin estimates and as-
sociated 95% confidence intervals. Nonparametric estimates
are shown only for the coolest and warmest climate terciles
and for binned temperatures that occur with a frequency of at
least one day per decade in the climate region. Line plots re-
port estimates from a semiparametric version of equation (1),
where temperature bin indicators are replaced by a fifth-
degree polynomial in the temperature bin. The semiparamet-
ric and nonparametric estimates agree closely for tempera-
tures occurring at least one day per decade. Shaded regions,
representing 95% confidence intervals on the semiparametric
estimates, are shown for the coolest and warmest terciles. For
comparison, figure 2b shows the results of estimating equa-
tion (1) under the assumption of homogeneous temperature
effects.4

Figure 2a reveals substantial heterogeneity in temperature
effects by climate tercile. In the warmest third of ZIP codes,
mortality effects are lowest on days with average tempera-
tures of 75◦F to 80◦F. For the coolest third of ZIP codes,
mortality is minimized on days with temperatures of 60◦F to
65◦F. As temperatures increase above 75◦F, the colder regions
feature a stark increase in mortality, while warmer regions ex-
hibit much more modest effects. For example, an 85◦F–90◦F
day increases the mortality rate in the coldest decile by 1.8
deaths per 100,000 but has nearly no effect (0.15 additional
deaths per 100,000) in the warmest decile. On the other hand,
mortality increases 2.6 to 4.8 times more on days at or below
freezing in the warmest region than in the coolest one.

Figure 2a suggests that regions are both relatively good
at dealing with temperatures they experience frequently and
relatively bad at dealing with temperatures they experience
infrequently. Comparing the temperature-mortality relation-
ships in figure 2a with the temperature frequency plots in
figure 1 reveals that for days with temperature greater than
65◦F, which occur with greater frequency relative to a 65◦F
day in the warmest region than the coolest, mortality effects
are larger in the warmest region than in the coolest. The op-
posite is true for days below 65◦F. Although the reference
category of 65◦F is a choice, it is also true that the curve for
the warmest tercile is flatter than the curve for the coolest

4Appendix tables B.1a and B.1b give numerical values of the nonparamet-
ric and semiparametric estimates for all temperature bins in figures 2a and
2b, respectively. The tables also report standard errors under our preferred
approach to clustering and for clustering at the county or state level.
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744 THE REVIEW OF ECONOMICS AND STATISTICS

FIGURE 2.—MORTALITY EFFECTS OF TEMPERATURE

This figure plots estimated three-day mortality effects of temperature. In panel A, effects are allowed to differ by the coolest, middle, or warmest third of ZIP codes as defined in figure 1. In panel B, effects are
restricted to be common to all U.S. ZIP codes. Effects reflect excess mortality on a day with a given average temperature relative to a day with an average temperature of 65◦F to 70◦F. Markers with whisker lines plot
nonparametric temperature bin estimates and associated 95% confidence intervals. Markers are only shown for binned temperatures that occur with a frequency of at least one day per decade in the climate region. Solid
lines and shaded regions plot semiparametric polynomial estimates and associated 95% confidence intervals. Confidence intervals are based on two-way clustered standard errors at the county and state × date levels.
Numerical values for all point estimates and standard errors are reported in appendix tables B.1a and B.1b.

tercile for days above 65◦F and is steeper for days below
65◦F.

Comparing the climate-specific heterogeneous effects in
figure 2a with the homogeneous effects in figure 2b illustrates
how properly accounting for temperature effect heterogene-
ity can affect the projected impact of climate change. The
homogeneous effects curve lies between the curves for the
warmest and coolest regions, implying that using homoge-
neous effects understates the mortality effects of hot days in
cool regions and overstates them in warm ones. The oppo-
site is true for cold days. So while the homogeneous effects
estimates imply that replacing a cold 25◦F–30◦F day with a
hot 85◦F–90◦F day has little effect on mortality in any re-
gion, this replacement actually increases mortality by 1.49
deaths per 100,000 in the coolest tercile and reduces mortal-
ity in the warmest tercile decrease by 0.75 deaths per 100,000.
In addition, the homogeneous effects are not a simple aver-
age of the heterogeneous effects but instead lie closer to the
cooler regions’ curve for cold temperatures and closer to the
warmer regions’ curve for hot temperatures. Thus, the homo-
geneous effects do not reflect the national average effects of
temperature.

As further illustration of the importance of allowing for
heterogeneous temperature effects when assessing climate
change effects, figure 3 presents predicted mortality impacts
of replacing the climate of each tercile by the climate of
one of the other terciles. When homogeneous effects are as-
sumed, warming is always associated with decreased mor-

tality. However, taking into account current climate-specific
heterogeneity, a qualitatively different pattern emerges. Un-
der heterogeneous effects, we see that warming the coolest
tercile’s temperature distribution to that of either the mid-
dle or warmest tercile, or warming the middle tercile’s tem-
perature distribution to that of the warmest tercile, increases
mortality, the opposite of what occurred in the homogeneous
effects case. Further, for each of the current climate terciles, a
change in a region’s temperature increases mortality whether
that change involves warming or cooling. Thus, the hetero-
geneity we observe is not simply due to some regions being
better at dealing with all temperatures than other regions.
Rather, whatever factors determine a region’s temperature-
mortality curve, they tend to perform particularly well given
the region’s actual climate relative to other climates.

C. Regional Heterogeneity as Adaptation

Regional heterogeneity in the temperature-mortality re-
lationship could arise due to regional adaptation, whether
technological, behavioral, or biological in nature, or due to
regional differences in characteristics that are correlated with
current climate but do not result from human choices or phys-
iology. This distinction is important for interpretation be-
cause if regional differences are caused by factors that are
immutable, then even though Chicago in the future may face
the climate that Dallas does now, we should not expect the
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ADAPTATION, TEMPERATURE, AND U.S. MORTALITY EFFECTS 745

FIGURE 3.—PREDICTED MORTALITY EFFECTS OF REGIONAL CLIMATE SWAPS

This figure summarizes mortality impacts from counterfactual scenarios in which each of these climate regions’ current temperature distribution is replaced by the current distribution of one of the other two climate
regions, shown in figure 1.

Chicago of the future to be as good at dealing with heat as
Dallas currently is. Thus, understanding the extent to which
current heterogeneity is due to adaptation is important for
understanding the extent to which future adaptation may mit-
igate the impact of climate change.

The nonlinear pattern of temperature effect heterogeneity
that we document with respect to baseline climate is informa-
tive of the underlying mechanisms driving this heterogeneity.
For example, the effects of hot days are smaller but the ef-
fects of cold days are larger in warm regions than in cooler
ones. This pattern is not readily explained by factors that
reduce sensitivity to both cold and hot days. In particular,
the treatment effect heterogeneity we document seems un-
likely to reflect regional differences in wealth or underlying
health endowments since these differences plausibly reduce
sensitivity to both hot and cold weather. By contrast, this non-
linear pattern is consistent with a wide variety of adaptation
behaviors.

There are numerous ways in which people and communi-
ties may adapt to their climate, such as through biological ac-
climatization, migration to different regions based on health,
infrastructure investments, or architectural design. In ap-
pendix section A.4, we provide evidence that air-conditioning
(AC) adoption is strongly associated with differences in heat-
related mortality across regions but not with cold-related mor-
tality. Since AC adoption can be correlated with many other
adaptive behaviors that also reduce the mortality effects of
heat (e.g., designing buildings to optimize thermal perfor-
mance), our estimates should not be interpreted as identifying
the causal effect of AC. Nevertheless, the AC results provide
additional, albeit suggestive, evidence that adaptive behav-
iors can explain the regional heterogeneity we document.

Our finding that places seem well adapted to their current
climate suggests it is reasonable to expect that regions could
continue to find it worthwhile to adapt to a changing climate.

It is important to note, however, that this statement concerns
the observed degree of historical adaptation to the current
range of climates given current technology. The degree to
which places continue to adapt to climate change will depend
on the future cost of available adaptation technologies and on
the ability of currently hot places to adapt to climates much
hotter than any U.S. regions currently experience.

IV. Climate Change-Induced Mortality and Adaptation

In this section, we develop estimates of the end-of-century
mortality impact of climate change accounting for hetero-
geneity and adaptation. To fix ideas, let mp

z (t ) denote the
mortality effect in ZIP code z and period p of a day with av-
erage temperature in bin t. We will consider both the current
and future periods by p = current and p = future, respec-
tively. Let gp

z (t ) be the number of days per year in which the
temperature falls in bin t in period p. Current annual mortality
(CAMz) is therefore

CAMz =
∑

t

mcurrent
z (t )gcurrent

z (t ).

We are interested in the change in excess mortality due to
climate change. Let m f uture

z (t ) denote the future mortality ef-
fect of temperature bin t in location z. In this case, the change
in excess mortality would incorporate both the change in the
temperature distribution and the change in the temperature-
mortality relationship:

FAMz − CAMz =
∑

t

m f uture
z (t )gf uture

z (t )

−
∑

t

mcurrent
z (t )gcurrent

z (t ). (2)
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A. Empirical Implementation

Computing the estimated change in excess mortality in-
volves the four functions on the right-hand side of equa-
tion (2): current and future temperature distributions and
current and future temperature-mortality relationships. The
current temperature distribution is that observed for the ZIP
code in the sample from 1992 to 2013. Our predictions of fu-
ture temperature distributions are based on ZIP-code-specific
projected changes in the daily temperature distribution be-
tween the current period (1992–2013) and the end of the
century (2080–2099).

We derive projected changes in temperature for each of
the 21 climate models for which daily scenarios are pro-
duced and distributed as part of the NEX-GDDP data set. The
NEX-GDDP data include daily minimum and maximum
temperature predictions on a 25 km by 25 km grid (0.25-
degree spatial resolution). We focus on climate model pro-
jections made under the Representative Concentration Path-
way (RCP) 8.5 “business as usual” scenario, where emissions
continue to rise throughout the 21st century (Meinshausen
et al., 2011; Van Vuuren et al., 2011). Finally, we aggregate
the gridded model projections to the ZIP code level using
inverse distance weighting of all climate model grid points
within 20 miles of the ZIP code centroid.5

To create a consensus projection from the 21 models,
we average over all of the models using the weights em-
ployed by the Fourth National Climate Assessment (Sander-
son, Knutti, & Caldwell, 2015; Sanderson & Wehner, 2017).
These weights, shown in column 1 of appendix table B.2a,
positively value model predictive skill but penalize codepen-
dency between models. We refer to the weighted average
model as the meta-model and the weighted average predicted
temperature distribution as the meta-distribution.

The meta-model projects that average annual temperatures
in the United States will rise by 8◦F by the end of the century
under the RCP 8.5 emissions scenario. Appendix figure B.6
maps the projected changes in temperature and CDD. Al-
though predicted warming tends to be higher in areas that
are currently cooler, comparing appendix figures B.2 and B.6
shows significant variation in predicted warming even among
regions that currently have quite similar climates.6

With sufficient observations for each ZIP code, we could
estimate the temperature-mortality relationship nonparamet-
rically for each ZIP code using equation (1) in the same way
that we estimated it nonparametrically at the climate tercile
level. In practice, however, there are not enough observations
for each ZIP code to estimate this relationship precisely. In-
stead, we estimate the daily temperature-mortality relation-
ship as a semiparametric, smooth function f (t, CDD) that
depends on both daily average temperature and climate, as
captured by the ZIP code’s CDD Normal.

5See Auffhammer et al. (2013) for a discussion of the use of climate
models in economic analysis.

6The techniques we use apply equally well to the output of any of the 21
individual climate models. We show the results of doing this in section IVD.

The regression equation used to estimate this semipara-
metric function of temperature and climate is identical to
equation (1) except the temperature and climate indicators
are replaced by this smooth function f (t, CDD) of tempera-
ture and climate, yielding the estimating equation:

mortalityzd = f (tzd , CDDz ) + ZipDayzd + Lzd

+ StYrzd + εzd . (3)

We define f (t, CDD) to be a linear spline in temperature
with knot points at 10-degree increments from 30◦F to 90◦F,
which is then fully interacted with a spline in log CDD with
knot points at the 33rd and 66th percentiles of the current
distribution of ZIP-code-level CDD normals (the same cutoff
points used to define the climate terciles). Specifically, if FCDD

is the cumulative distribution function of the current CDD
Normal distribution, then

f (t, CDD) = s(t, β) +
2∑

p=0

max
(

log CDD

− log F−1
CDD(0.33p), 0

) × s(t, βp),

where

s(t, β) = β0t +
9∑

k=3

βk max(t − 10k, 0).

Since f (t, CDD) is identified up to a constant, we always
evaluate it relative to a reference temperature of 65◦F. We
compare the parametric estimates from equation (3) to the
nonparametric temperature bin results from equation (1), and
we reestimate equation (1) but with fitted, three-day mor-
tality values ˆmortalityzd = f̂ (t, CDD) as the outcome and
controlling only for temperature bin indicators. As shown in
appendix figure B.7, the parametric estimates broadly align
with the nonparametric estimates in each climate tercile.

Appendix figure B.8 further illustrates the parametric es-
timates from equation (3) by plotting the fitted temperature-
mortality relationship f̂ (t, CDD) for two cold ZIP codes
(Fargo, North Dakota, and Minneapolis, Minnesota), one
moderate ZIP code (Chicago, Illinois), and two hot ZIP
codes (Dallas, Texas, and Miami, Florida), evaluated at each
ZIP code’s current CDD Normal. As with the nonparametric
tercile-based regressions presented in figure 2a, cold places
suffer the most from hot days, while hot places suffer the
most from cold days. This figure also previews how we will
model adaptation to future climate. The climate models we
use project Chicago’s end-of-century CDD to be 2,327, which
is very close to Dallas’s current climate with 2,668 CDD.
When we consider adaptation, we will use the temperature-
mortality curve for a region with 2,327 CDD—essentially
that of current-Dallas—to proxy for future Chicago, assum-
ing the region fully adapts to its new climate.
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Finally, we can relate the estimate of f (t, CDD) to the
mortality effect mp

z (t ) of a day with average temperature t in
ZIP code z in period p, introduced in our general framework
above. If M65p

z represents mortality on a 65◦F day in ZIP
code z and period p, then

mp
z (t ) = M65p

z + f (t, CDDp
z ).

B. Adaptation Predictions

We estimate the change in mortality between the current
period (1992–2013) and the end of the century (2080–2099)
using the meta-predictions of climate change under the RCP
8.5 emissions scenario. To investigate the importance of ac-
counting for regional heterogeneity and adaptation, we con-
struct these estimates under three different sets of assump-
tions about how the mortality effects of temperature vary
spatially and over time.

Homogeneous current effects with no future adaptation. Our
first set of predictions relies on two simplifications com-
monly made when predicting the mortality effects of climate
change. The first is to use a homogeneous mortality estimate,
mperiod (t ) rather than region-specific estimates, mperiod

z (t ).
The second is to estimate health damages under an assump-
tion of no adaptation (i.e., to define m f uture

z (t ) to be equal to
mcurrent

z (t )). We implement this empirically by estimating a
version of equation (3) where we drop all terms in f (t, CDD)
that depend on CDD to get a single temperature-mortality re-
lationship m(t )current = M65 + f (t ). We then use that rela-
tionship for all ZIP codes in both current and future periods.
Note that while we use the same mortality function f (t ) for
all regions, each ZIP code’s mortality change is computed
with respect to its own projected future temperature distri-
bution. We call this the case of homogeneous current effects
with no future adaptation.

Current climate heterogeneity with no future adaptation.
Our second set of predictions allows each ZIP code to have its
own temperature-mortality relationship, mcurrent

z (t ), by esti-
mating equation (3) where f (t, CDD) is permitted to depend
on the ZIP code’s current CDD Normal. Thus, any two ZIP
codes with the same current CDD Normals will have the same
estimated temperature-mortality curve. Using this mortality
relationship to capture both current and future conditions, we
continue to assume there is no adaptation. We call this the case
of current climate heterogeneity with no future adaptation.

Current climate heterogeneity with future adaptation. In
our third set of predictions, we account for both climate-
specific heterogeneity in the temperature-mortality relation-
ship and adaptation over time. We operationalize this by eval-
uating the future mortality effects of temperature, f (t, CDD),
in ZIP code z under the projected future climate (CDD)
in that ZIP code. Intuitively, this approach assumes that if

Chicago’s climate changes so that its end-of-century CDD
is equal to Dallas’s current CDD, then Chicago’s end-of-
century temperature-mortality relationship will be the same
as Dallas’s is today, up to a constant.

Since under our approach to adaptation, the current and fu-
ture temperature-mortality relationships are allowed to differ,
the constant terms in mcurrent

z (t ) and m f uture
z (t ), which are not

identified empirically, do not drop out of the calculation of
climate change mortality effects (equation [2]). For our com-
putations, we assume that mortality on a 65◦F day does not
change over time (M65current

z = M65 f uture
z ). Our justification

for this assumption is that when the average temperature is
near 65◦F, individuals typically do not choose to heat or cool
their homes. This assumption is appropriate if regional differ-
ences in mortality on 65◦F days, after adjusting for seasonal
and other fixed effects, reflect baseline differences in mortal-
ity across ZIP codes that are not affected by differences in
climate. We call this the current climate heterogeneity with
future adaptation case.

Our approach to modeling adaptation assumes that adap-
tation is complete in the sense that if future Chicago has
Dallas’s current climate, future Chicago will respond to tem-
perature like Dallas does today. This need not be the case if
the cost of adaptation changes or if some characteristics of
current Chicago are immutable. In addition, our approach as-
sumes that a region’s past adaptation to its current climate has
no long-lasting effects in the sense that if Chicago has Dal-
las’s climate in the future, after it adapts, it will be no better
at dealing with cold temperatures than Dallas is now, even
though Chicago currently has a significant advantage over
Dallas in this area.7 Finally, this approach ignores the pos-
sibility of technological progress, which may moderate the
temperature-mortality relationship beyond what we capture.

Example: Chicago. Figure 4 depicts the relevant pieces
of equation (2) for computing the projected end-of-century
change in mortality for Chicago. Chicago’s current and
future temperature distributions are depicted by the shaded
regions. To compute the mortality effect with homoge-
neous effects and no adaptation, we use the homogeneous
temperature-mortality relationship in both the current and
future periods. For the current climate heterogeneity with no
future adaptation case, expected mortality is computed us-
ing Chicago’s current temperature-mortality relationship in
both periods. Finally, to allow for current climate hetero-
geneity and future adaptation, we compute current mortal-
ity using Chicago’s current temperature-mortality curve and
its current temperature distribution, and we compute future
mortality using Chicago’s future curve its future temperature
distribution.

7These concerns could be incorporated into our approach by either basing
future Chicago’s temperature-mortality relationship on a weighted average
of current Chicago and current Dallas, with the relative weight placed on
regions that currently have Chicago’s future climate capturing the extent of
adaptation, or by placing separate weights on the two areas for temperatures
above and below 65◦F.

D
ow

nloaded from
 http://direct.m

it.edu/rest/article-pdf/103/4/740/1965298/rest_a_00936.pdf?casa_token=gJ5m
3an_stAAAAAA:sdSN

N
2G

fXZq95Xqw
TJO

jK27TefR
JiM

z9B60Ko9LnAkAKBeSh0PoKeVC
5qeC

vLLXL1U
ip5O

9lC
w

 by IN
D

IAN
A U

N
IV LIBR

AR
IES user on 17 July 2022



748 THE REVIEW OF ECONOMICS AND STATISTICS

FIGURE 4.—CLIMATE CHANGE ASSESSMENT FOR CHICAGO, ILINOIS

This figure depicts the components used by equation (2) to assess end-of-century (2080–2099) climate change impacts on mortality in Chicago. The end-of-century temperature distribution is based on the meta-model
projection for Chicago under the RCP 8.5 greenhouse gas emissions scenario.

C. End-of-Century Mortality Prediction Results

Figure 5 presents the results from assessing annual mortal-
ity effects of end-of-century climate change as predicted by
the meta-model under the RCP 8.5 emissions scenario. Panel
A depicts results under the conventional approach of assum-
ing homogeneous current effects and no adaptation. Each box
and whisker plot summarizes percentage changes in predicted
annual mortality by the end of the century (2080–2099, verti-
cal axis) for ZIP codes whose current climate falls in the bin
depicted on the horizontal axis. Boxes stretch from the 25th
percentile (lower hinge) to the 75th percentile (upper hinge)
of mortality effects. The median is plotted as a line across the
box, and whiskers stretch from the 5th to the 95th percentiles.
In this case, mortality effects increase with CDD up to around
2,000 CDD, which is well into the warmest climate tercile
(which begins at 1,442 CDD), and then flatten out as CDD
continue to increase. These findings are further summarized
by column 5 of table 1, which shows the aggregate percent-
age mortality change for each of the climate terciles and for
the United States as a whole.8 The average mortality effects
increase in magnitude from the coolest to the warmest third

8Appendix tables B.2a to B.2d show the analog of table 1 for the un-
weighted meta-model and for each of the individual climate models.

of ZIP codes, with a 0.76% increase in mortality overall. This
pattern agrees with the conventional wisdom that the effects
of climate change will be largest in regions that are currently
hot.

The results change markedly once heterogeneity, with re-
spect to current climate, is incorporated into the climate as-
sessment. Panel B of figure 5 illustrates the heterogeneous
current climate effects and the no-adaptation case. Here, the
pattern is reversed relative to the conventional approach, with
the mortality effect being flat up to 1,500 CDD (which in-
cludes the coolest and middle ZIP code terciles) and then
declining as CDD continue to rise. The large average in-
creases in mortality in cool and moderate ZIP codes result
from two factors in combination: these regions are currently
poorly adapted to very hot days, but climate models project
increased exposure to such days in the future.9

9As indicated by the height of the box and whisker plots, effects in panel
B are also more dispersed than those in panel A, especially among cooler
regions. This difference arises for two reasons. First, ZIP codes with the
same climate today can have different predicted future climates, including
different fractions of very hot days. Second, because cooler regions are
particularly bad at dealing with very hot days (i.e., the temperature-mortality
curve is very steep for hot days), as in figure 2a, small variations in the
proportion of very hot days can induce very different mortality predictions.
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ADAPTATION, TEMPERATURE, AND U.S. MORTALITY EFFECTS 749

FIGURE 5.—END-OF-CENTURY CLIMATE CHANGE MORTALITY EFFECTS

The figure summarizes annual mortality effects of end-of-century (2080–2099) climate change as projected by the meta-model, an average of the 21 NEX-GDDP climate models, under the RCP 8.5 emissions scenario.
Effects are calculated for each ZIP code based on the ZIP code’s current and future (projected) climates. Panel A reports climate effects under the assumption of homogeneous temperature effects. Panel B reports
climate effects that allow for heterogeneous temperature effects based on current climate but do not allow for future adaptation. Panel C reports climate effects that incorporate both current heterogeneity and future
adaptation. Box and whisker plots summarize the distribution of climate change effects across ZIP codes in each climate range. Boxes stretch from the 25th percentile (lower hinge) to the 75th percentile (upper hinge).
The median is plotted as a line across the box. Whiskers stretch from the 5th percentile to the 95th percentile.

TABLE 1:—END-OF-CENTURY CLIMATE CHANGE EFFECTS

(1) (2) (3) (4) (5) (6) (7)
Annual Mortality Change (%)

Avg. Temp. (◦F) Annual CDD Homogeneous Effects Climate Heterogeneity

Current Future Current Future No Adaptation No Adaptation Future Adaptation

Coolest third of ZIPs 49.4 58.1 525 1,661 −0.03 2.25*** 0.84**

(0.12) (0.50) (0.35)
Middle third of ZIPs 55.2 63.5 1,079 2,491 0.54*** 2.89*** −0.41

(0.16) (0.93) (0.35)
Warmest third of ZIPs 66.5 73.6 2,600 4,397 1.75*** 1.33*** −1.97***

(0.28) (0.31) (0.67)
All U.S. ZIPs 57.1 65.1 1,413 2,864 0.76*** 2.15*** −0.53*

(0.18) (0.47) (0.32)

The table summarizes ZIP code-level climate change impacts, aggregated to climate terciles and to the United States as a whole. Columns 1 to 4 summarize the current climate of each region as well as the
end-of-century (2080–2099) climate projected by the meta-model under the RCP 8.5 greenhouse gas emissions scenario. Columns 5 to 7 are based on the ZIP-code-level annual mortality effects summarized in figure 5.
Column 5 reports climate effects under the assumption of homogeneous temperature effects. Column 6 reports “business as usual” climate effects that allow for heterogeneous temperature effects based on current
climate but do not allow for future adaptation. Column 7 reports climate effects that incorporate both current heterogeneity and future adaptation. ***1%, **5%, and *10%.

Aggregate results for the case of heterogeneous effects by
climate with no future adaptation are presented in column 6
of table 1. Mortality increases are larger in the coolest third
of ZIP codes (2.25%) than in the warmest (1.33%). The mor-
tality increase in the middle (2.89%) tercile is slightly larger
than in the coolest, as these ZIP codes expect, on average, to
experience more very hot days in the future than the coolest
ones. Overall, our analysis predicts an increase in mortality
across all U.S. ZIP codes of 2.15%, almost three times larger
than is implied by homogeneous effects (0.76%). To put this
number in perspective, this increase is roughly equivalent to
the share of U.S. elderly deaths in 2013 due to chronic kid-

ney disease (2.1%), accidents (2.4%), or influenza (2.5%)
and around 10% of the share of elderly deaths due to cancer
(21.4%).10

Panel C of figure 5 presents results under heterogeneous
current climate effects with future adaptation. Three features
emerge. First, net of adaptation, climate change is expected to

10Centers for Disease Control and Prevention, National Center for Health
Statistics. Underlying Cause of Death 1999-2017 on CDC WONDER On-
line Database, released December 2018. Data are from the Multiple Cause
of Death Files, 1999–2017, as compiled from data provided by the 57 vi-
tal statistics jurisdictions through the Vital Statistics Cooperative Program.
Accessed at http://wonder.cdc.gov/ucd-icd10.html.
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be worse in the coolest regions than in the warmest ones. Sec-
ond, incorporating adaptation to future climate yields mortal-
ity effects of climate change that are systematically lower than
the no-adaptation estimates in panel B. Third, the predicted
mortality change under adaptation is negative for regions with
a current climate of 1,000 CDD (e.g., current Chicago) and
up. Column 7 of table 1 summarizes these findings at a more
aggregate level. For each climate tercile and the United States
overall, the mortality effect with future adaptation is smaller
than without (column 6); that is, adaptation reduces the as-
sessed mortality effects of climate change. In each case, the
magnitude of these differences is large, with the mortality ef-
fect shrinking by over 60% for the coolest third of ZIP codes
and actually becoming negative for the two other terciles and
for the United States overall.

These findings indicate that climate change could reduce
elderly mortality in the United States if places adapt to the
future climates the way places are adapted to their current
climates. That currently hot regions appear better adapted to
heat than cooler places suggests that the benefits of adaptation
exceed the cost within the domain of current climates. At the
same time, there remains uncertainty about which adaptation
technologies will be available in the future, how much they
will cost to use, and how effective they will be at mitigating
the effects of climates that are much hotter than any currently
being experienced in the United States.

One aspect of adaptation where these concerns are particu-
larly salient is migration. If the adaptation to hot temperatures
we currently observe is driven by migration based on current
climates, with individuals who are particularly vulnerable to
heat moving to cooler climates, then their ability to continue
to migrate in this way in the future depends on the continued
availability of similarly desirable locations with cool climates
in the future.

Even if climate change reduces mortality, it is important
to note that this does not necessarily imply an improvement
in elderly welfare. If adaptation to heat involves staying in-
doors and running the AC, then a decrease in utility from
outdoor activities may offset some or all of the mortality
benefit of adaptation relative to the current situation. In ad-
dition, warmer global temperatures may lead to changes in
sea levels, agriculture, vector-borne disease prevalence, and
other factors that may directly reduce human well-being.

D. Alternative Climate Projections

Our primary climate assessment results use climate change
projections from the weighted meta-model under the RCP
8.5 emissions scenario. In appendix A.3, we show results
for the RCP 4.5 emissions scenario, a midrange projection
under which emissions peak around 2,040 and then decline.
Mortality effects under the RCP 4.5 scenario are qualitatively
similar to but more muted than the effects under the RCP 8.5
scenario.

Appendix figures B.9b to B.9w and appendix tables B.2a
to B.2d present separate prediction results for each of the 21
individual climate change models and an unweighted version
of the meta-model. These results are broadly consistent with
those of our main projections. Because the NEX-GDDP data
set contains a single realization of daily temperatures for each
model, we are unable to consider uncertainty within a partic-
ular model that could arise due to uncertainty about appropri-
ate choices of parameter values or realizations of stochastic
quantities. However, the individual models predict end-of-
century changes in average temperature ranging from about
5◦F to 11.5◦F. Comparing effects for the individual models
provides insight into the range of possible outcomes in mod-
els that exhibit a relatively high or low degree of warming.

E. Geography of the Mortality Effects of Climate Change

Figure 6 maps the estimated mortality impact of end-of-
century climate change under the three cases that we simu-
late, aggregated by county to facilitate comparison with prior
studies. Panel A, which assumes homogeneous temperature
effects, shows that the areas that are currently the hottest,
the Deep South and Desert Southwest, will tend to suffer the
largest mortality increases. Many of the coldest parts of the
country, in the Northeast, Upper Midwest, and Northwest,
are predicted to see a decrease in mortality due to the decrease
in very cold days resulting from climate change. This geo-
graphic pattern mirrors the all-age mortality result of Hsiang
et al. (2017; see figure 2 of that paper), which also assumes
homogeneous effects and no future adaptation.

Panel B of figure 6, which maps mortality predictions al-
lowing for current climate heterogeneity but not future adap-
tation, reverses the geographic distribution of climate dam-
ages relative to assuming homogeneous temperature effects.
Here, the mortality impacts are the smallest in the warmest
regions of the country. The largest effects are expected to be
felt in a swath across the Midwest and Central Plains, which
expect a large increase in hot days and are currently poorly
adapted to dealing with heat.

Panel C of figure 6 maps mortality predictions that in-
corporate both current heterogeneity and future adaptation
to climate change. Here we see that adaptation has the po-
tential to significantly moderate the impact of warming over
much of the country, with the yellow and green areas exhibit-
ing small positive to negative mortality effects. In isolation,
these negative effects do not necessarily imply a benefit due
to adaptation itself since some regions are projected to bene-
fit from climate change even without additional adaptation in
the future (panel B). However, many of the areas that show
large, negative mortality effects net of adaptation (panel C)
also exhibit large, positive mortality effects without adapta-
tion (panel B), indicating a large adaptation benefit. These
regions would be expected to have the largest per capita will-
ingness to pay for adaptation to climate change.
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FIGURE 6.—GEOGRAPHY OF END-OF-CENTURY CLIMATE CHANGE EFFECTS

The map shows county-level aggregates of the ZIP-code-level climate change impacts on annual mortality summarized in figure 5. Panel A reports climate effects under the assumption of homogeneous temperature
effects. Panel B reports climate effects that allow for heterogeneous temperature effects based on current climate but do not allow for future adaptation. Panel C reports climate effects that incorporate both current
heterogeneity and future adaptation.
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V. Conclusion

This paper demonstrates the importance of accounting for
regional heterogeneity and adaptation in predicting the im-
pact of climate change on U.S. elderly mortality. Incorporat-
ing heterogeneous mortality effects of temperature into a cli-
mate change assessment substantially increases the estimated
mortality impact of warming and changes which regions are
likely to suffer the most. Allowing for adaptation yields es-
timated mortality impacts of climate change that are much
lower than those calculated without adaptation and possibly
even negative. Although we do not consider the future cost
of adaptation, our results show that regions have chosen to
engage in adaptation that significantly reduces elderly mor-
tality given currently available technologies and current and
historical costs, suggesting that there is significant ability to
moderate the mortality impact of future warming even using
technologies that are readily available today. The potential
for future technological change to reduce the costs of adap-
tation may lower the mortality effect of climate change even
further.

Our paper has focused on the mortality effects of climate
change among the U.S. elderly. While the elderly are a rela-
tively vulnerable group, the United States is a wealthy and ge-
ographically diverse country where the opportunity to adapt
to climate change may be particularly high. Effects of climate
change could differ for other populations, especially those in
poorer or more geographically constrained countries (e.g.,
Bangladesh) with less opportunity to adapt to future climate
change. Although we do not consider the nonelderly, other
countries, or nonmortality outcomes, the methods we em-
ploy could be applied to estimating climate-change impacts
in these environments as well.

Finally, it is important to recognize that our estimates of
heterogeneity and adaptation are based on current experience
and that our climate change assessments extrapolate from
this experience to a future as simulated by climate mod-
els. However, the climate of the future may move outside
our present experience or even beyond what is projected by
climate models. Because of this, there remains significant
uncertainty about the future damages from climate change
and the likelihood of large-scale, potentially catastrophic
changes that is not fully incorporated into our model and
could not be without quantifying these risks through addi-
tional assumptions. This uncertainty could easily dominate
the statistical uncertainty expressed in the standard errors
of our estimates. As Martin Weitzman wrote in this journal
when deriving his “Dismal Theorem” and arguing in favor
of a precautionary principle with respect to climate policy
(Weitzman, 2009), “It is not possible to learn enough about
the frequency of extreme tail events from finite samples alone
to make [utility-based welfare calculations] independent of
artificially imposed bounds on the extent of possibly ruinous
disasters. . . . Climate-change economics generally—and the
fatness of climate-sensitivity tails specifically—are prototype
examples of this principle, because we are trying to extrapo-

late inductive knowledge far outside the range of limited past
experience.”
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