Last updated: 2023-08-10
Checks: 6 1
Knit directory: m6A_in_disease_genetics/
This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
The R Markdown is untracked by Git. To know which version of the R
Markdown file created these results, you’ll want to first commit it to
the Git repo. If you’re still working on the analysis, you can ignore
this warning. When you’re finished, you can run
wflow_publish
to commit the R Markdown file and build the
HTML.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20230331)
was run prior to running
the code in the R Markdown file. Setting a seed ensures that any results
that rely on randomness, e.g. subsampling or permutations, are
reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version c230e76. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for
the analysis have been committed to Git prior to generating the results
(you can use wflow_publish
or
wflow_git_commit
). workflowr only checks the R Markdown
file, but you know if there are other scripts or data files that it
depends on. Below is the status of the Git repository when the results
were generated:
Ignored files:
Ignored: .ipynb_checkpoints/
Ignored: analysis/m6A_switch_to_disease_h2g.nb.html
Ignored: data/plots/
Untracked files:
Untracked: analysis/.ipynb_checkpoints/
Untracked: analysis/IBD_E_S_m6A.Rmd
Untracked: analysis/IBD_E_S_m6A_output.Rmd
Untracked: analysis/LDL_E_S_m6A.Rmd
Untracked: analysis/LDL_m6A_output.Rmd
Untracked: analysis/RA_m6A_output.Rmd
Untracked: analysis/WhiteBlood_WholeBlood_E_M.Rmd
Untracked: analysis/learn_ctwas.Rmd
Untracked: analysis/lymph_m6A_output.Rmd
Untracked: analysis/pre_weights_m6AQTL.txt
Untracked: analysis/rbc_E_S_m6A_output.Rmd
Untracked: analysis/rbc_m6A_output.Rmd
Untracked: analysis/wbc_E_S_m6A_output.Rmd
Untracked: analysis/wbc_m6A_output.Rmd
Untracked: code/.ipynb_checkpoints/
Untracked: code/all_m6a_sites_with_paired_cisNATs_summary.csv
Untracked: code/check_double_strand.ipynb
Untracked: code/check_double_strand_v2.ipynb
Untracked: code/ctwas/
Untracked: code/figure/
Untracked: code/learn_gviz.Rmd
Untracked: code/learn_gviz.html
Untracked: code/learn_gviz.nb.html
Untracked: code/m6AQTL_finemapping.Rmd
Untracked: code/summary_TWAS_coloc_m6A_2023.Rmd
Untracked: code/test_gviz.ipynb
Untracked: code/twas_genes_PP4_0.3_immune_traits_trackplots.pdf
Untracked: data/.ipynb_checkpoints/
Untracked: data/ADCY7_gwas_input.tsv
Untracked: data/ADCY7_qtl_input.tsv
Untracked: data/Allergy_full_coloc.txt
Untracked: data/Asthma_full_coloc.txt
Untracked: data/CAD_full_coloc.txt
Untracked: data/Eosinophil_count_full_coloc.txt
Untracked: data/GSE125377_jointPeakReadCount.txt
Untracked: data/IBD_full_coloc.txt
Untracked: data/JointPeaks.bed
Untracked: data/Li2022_dsRNAs.xlsx
Untracked: data/Lupus_full_coloc.txt
Untracked: data/RA_full_coloc.txt
Untracked: data/TABLE1_hg19.txt
Untracked: data/TABLE1_hg19.txt.zip
Untracked: data/__MACOSX/
Untracked: data/coloc_blood_traits.csv
Untracked: data/crohns_disease_full_coloc.txt
Untracked: data/edit_sites_and_GE_neg_correlated.txt
Untracked: data/edit_sites_and_GE_pos_correlated.txt
Untracked: data/features
Untracked: data/human_EERs.csv
Untracked: data/human_EERs.txt
Untracked: data/lymph_full_coloc.txt
Untracked: data/m6A_TWAS_results.csv
Untracked: data/m6a_TWAS_genes.txt
Untracked: data/m6a_joint_calling_peaks.csv
Untracked: data/nat_sense_pairs.csv
Untracked: data/plt_full_coloc.txt
Untracked: data/rbc_full_coloc.txt
Untracked: data/rdw_full_coloc.txt
Untracked: data/reported_AS_targets_S1.txt
Untracked: data/reported_AS_wanowska.txt
Untracked: data/sig_coloc_results/
Untracked: data/test_locuscomparer.pdf
Untracked: data/ulcerative_colitis_full_coloc.txt
Untracked: data/wbc_full_coloc.txt
Untracked: output/.ipynb_checkpoints/
Untracked: output/all_m6a_sites_with_cisNATs.csv
Untracked: output/all_m6a_sites_with_paired_cisNATs_summary.csv
Untracked: output/all_m6a_sites_with_paired_cisNATs_summary_PP40.3.csv
Untracked: output/all_m6a_sites_with_paired_cisNATs_summary_PP40.5.csv
Untracked: output/all_m6a_sites_with_paired_cis_NATs.csv
Untracked: output/fine_mapped_m6AQTLs_TWAS_genes_highPP4.rds
Untracked: output/gene_summary.csv
Untracked: output/immune_related_m6A_targets.csv
Untracked: output/m6aQTL_dsRNAs_PPP2R3C_PRORP.pdf
Untracked: output/m6a_peaks_nearby_dsRNAs.csv
Untracked: output/m6a_sites_near_all_dsRNAs_twas.csv
Untracked: output/m6a_sites_near_dsRNAs_coloc.csv
Untracked: output/m6a_sites_near_dsRNAs_twas.csv
Untracked: output/m6a_sites_near_dsRNAs_twas_summary.csv
Untracked: output/m6a_sites_overlapping_NAT_twas.csv
Untracked: output/m6a_sites_overlapping_dsRNAs_coloc.csv
Untracked: output/m6a_sites_overlapping_dsRNAs_twas.csv
Untracked: output/m6a_sites_overlapping_dsRegions.csv
Untracked: output/m6a_sites_overlapping_dsRegions_coloc.csv
Untracked: output/negatively_correlated_genes.txt
Untracked: output/postively_correlated_genes.txt
Untracked: output/rs1806261_RABEP1-NUP88_focused_locusview.pdf
Untracked: output/rs1806261_RABEP1-NUP88_locusview.pdf
Untracked: output/rs3177647_MAPKAPK5-AS1-MAPKAPK5_locusview.pdf
Untracked: output/rs3204541_DDX55-EIF2B1_locusview.pdf
Untracked: output/rs7184802_ADCY7-BRD7_locusview.pdf
Untracked: output/rs7184802_ADCY7_locuscompare.pdf
Untracked: output/twas_genes_PP4_0.3_immune_traits_trackplots.pdf
Untracked: output/twas_genes_PP4_0.5_blood_traits_trackplots.pdf
Untracked: output/twas_m6a_sites_with_all_cisNATs.RDS
Untracked: output/twas_m6a_sites_with_cisNATs_range.RDS
Untracked: output/twas_m6a_sites_with_the_nearest_cisNAT.RDS
Untracked: twas_genes_PP4_0.3_immune_traits_trackplots.pdf
Unstaged changes:
Modified: analysis/index.Rmd
Modified: analysis/m6A_switch_to_disease_h2g.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
There are no past versions. Publish this analysis with
wflow_publish()
to start tracking its development.
Causal TWAS is a method that adjusts for confounders that drive variants-trait associations to identify causal genes. The confounders could be genetic variants in LD with the true causal one regulating genes that do not affect traits, or variants have direct effects on traits not through altering gene expression. The general way to model this problem is as follows: \[ Y = \sum_k\sum_{j\in M_k}\beta_jX_j + \epsilon, \text{ } \epsilon \sim N(0, \sigma^2) \] where variants are grouped into K categories and the effect size for each category can be modeled by a spike and slab normal distribution. The estimation of parameters were done using Expectation-maximum algorithm, and finally the posterior causal probability for individual variant can be calculated.
In EM algorithm, the updated rules for \(\pi_k^{(t+1)}\) is average PIPs for each K group and \(\sigma^{2,(t+1)}_{t}\) is sum of PIPs weighted by second moment of posterior effect size.
The calculation of PIPs and second moment is by analyzing each block one at a time under the single effect approximation using SuSiE.
Assuming each single block explains a minimal variance of y, so \(\sigma = 1\).
Todo: re-run TWAS for a subset of GEUVADIS LCL samples that match with 60 LCLs in our m6A-QTL study
Due to LD mismatch between African and European ancestry, we would like to estimate the fraction of top QTLs identified from individuals of African ancestry that are missing from UKBB variants. The table below shows less than 4% of selected SNPs with YRI samples are not found in those with UKBB samples across three models for expression, splicing or m6A QTL data.
[1] "eQTL" "962" "920"
[1] "eQTL" "5835" "5671"
[1] "eQTL" "16601" "16153"
[1] "sQTL" "1310" "1271"
[1] "sQTL" "6380" "6207"
[1] "sQTL" "17023" "16597"
[1] "m6aQTL" "478" "467"
[1] "m6aQTL" "2514" "2440"
[1] "m6aQTL" "6357" "6176"
feature top1 lasso enet
1 eQTL 0.04 0.03 0.03
2 sQTL 0.03 0.03 0.03
3 m6aQTL 0.02 0.03 0.03
R version 4.2.0 (2022-04-22)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: CentOS Linux 7 (Core)
Matrix products: default
BLAS/LAPACK: /software/openblas-0.3.13-el7-x86_64/lib/libopenblas_haswellp-r0.3.13.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=C
[4] LC_COLLATE=C LC_MONETARY=C LC_MESSAGES=C
[7] LC_PAPER=C LC_NAME=C LC_ADDRESS=C
[10] LC_TELEPHONE=C LC_MEASUREMENT=C LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] forcats_0.5.1 stringr_1.5.0 purrr_1.0.1 readr_2.1.4
[5] tidyr_1.3.0 tibble_3.2.1 ggplot2_3.4.2 tidyverse_1.3.1
[9] RSQLite_2.3.1 data.table_1.14.8 dplyr_1.1.2 ctwas_0.1.38
loaded via a namespace (and not attached):
[1] httr_1.4.6 sass_0.4.1 bit64_4.0.5 jsonlite_1.8.7
[5] foreach_1.5.2 pgenlibr_0.3.6 logging_0.10-108 modelr_0.1.8
[9] bslib_0.3.1 blob_1.2.4 cellranger_1.1.0 yaml_2.3.5
[13] pillar_1.9.0 backports_1.4.1 lattice_0.20-45 glue_1.6.2
[17] digest_0.6.33 promises_1.2.0.1 rvest_1.0.2 colorspace_2.1-0
[21] htmltools_0.5.2 httpuv_1.6.5 Matrix_1.6-0 pkgconfig_2.0.3
[25] broom_0.8.0 haven_2.5.0 scales_1.2.1 later_1.3.0
[29] tzdb_0.4.0 git2r_0.30.1 generics_0.1.3 DT_0.22
[33] cachem_1.0.8 withr_2.5.0 cli_3.6.1 magrittr_2.0.3
[37] crayon_1.5.2 readxl_1.4.3 memoise_2.0.1 evaluate_0.15
[41] fs_1.6.3 fansi_1.0.4 xml2_1.3.3 tools_4.2.0
[45] hms_1.1.3 lifecycle_1.0.3 munsell_0.5.0 reprex_2.0.1
[49] compiler_4.2.0 jquerylib_0.1.4 rlang_1.1.1 grid_4.2.0
[53] iterators_1.0.14 rstudioapi_0.15.0 htmlwidgets_1.5.4 crosstalk_1.2.0
[57] rmarkdown_2.14 gtable_0.3.3 codetools_0.2-18 DBI_1.1.3
[61] R6_2.5.1 lubridate_1.8.0 knitr_1.39 fastmap_1.1.1
[65] bit_4.0.5 utf8_1.2.3 workflowr_1.7.0 rprojroot_2.0.3
[69] stringi_1.7.12 Rcpp_1.0.11 vctrs_0.6.3 dbplyr_2.3.3
[73] tidyselect_1.2.0 xfun_0.30