Last updated: 2023-08-16

Checks: 6 1

Knit directory: m6A_in_disease_genetics/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20230331) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.

absolute relative
~/projects/m6A_in_disease_genetics/code/ctwas/ctwas_config_b37.R code/ctwas/ctwas_config_b37.R
~/projects/m6A_in_disease_genetics/code/ctwas/qiansheng/locus_plot.R code/ctwas/qiansheng/locus_plot.R
~/projects/m6A_in_disease_genetics/data/zhao_silver_genes.csv data/zhao_silver_genes.csv

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 08eaf44. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .ipynb_checkpoints/
    Ignored:    analysis/m6A_switch_to_disease_h2g.nb.html
    Ignored:    data/plots/

Untracked files:
    Untracked:  HMGCR_locus_gene_tracks.pdf
    Untracked:  Rplots.pdf
    Untracked:  analysis/.ipynb_checkpoints/
    Untracked:  analysis/IBD_E_S_m6A.Rmd
    Untracked:  analysis/IBD_E_S_m6A_output.Rmd
    Untracked:  analysis/LDL_E_S_m6A.Rmd
    Untracked:  analysis/LDL_m6A_output.Rmd
    Untracked:  analysis/RA_m6A_output.Rmd
    Untracked:  analysis/WhiteBlood_WholeBlood_E_M.Rmd
    Untracked:  analysis/identify_m6A_mechanisms_with_finemapping.Rmd
    Untracked:  analysis/lymph_m6A_output.Rmd
    Untracked:  analysis/pre_weights_m6AQTL.txt
    Untracked:  analysis/rbc_E_S_m6A_output.Rmd
    Untracked:  analysis/rbc_m6A_output.Rmd
    Untracked:  analysis/rbc_m6A_output_hg19.Rmd
    Untracked:  analysis/wbc_E_S_m6A_output.Rmd
    Untracked:  code/.ipynb_checkpoints/
    Untracked:  code/all_m6a_sites_with_paired_cisNATs_summary.csv
    Untracked:  code/check_double_strand.ipynb
    Untracked:  code/check_double_strand_v2.ipynb
    Untracked:  code/ctwas/
    Untracked:  code/figure/
    Untracked:  code/learn_gviz.Rmd
    Untracked:  code/learn_gviz.html
    Untracked:  code/learn_gviz.nb.html
    Untracked:  code/m6AQTL_finemapping.Rmd
    Untracked:  code/summary_TWAS_coloc_m6A_2023.Rmd
    Untracked:  code/test_gviz.ipynb
    Untracked:  code/twas_genes_PP4_0.3_immune_traits_trackplots.pdf
    Untracked:  data/.ipynb_checkpoints/
    Untracked:  data/ADCY7_gwas_input.tsv
    Untracked:  data/ADCY7_qtl_input.tsv
    Untracked:  data/Allergy_full_coloc.txt
    Untracked:  data/Asthma_full_coloc.txt
    Untracked:  data/CAD_full_coloc.txt
    Untracked:  data/Eosinophil_count_full_coloc.txt
    Untracked:  data/GSE125377_jointPeakReadCount.txt
    Untracked:  data/HMGCR_ctwas_dat.Rd
    Untracked:  data/IBD_full_coloc.txt
    Untracked:  data/JointPeaks.bed
    Untracked:  data/Li2022_dsRNAs.xlsx
    Untracked:  data/Lupus_full_coloc.txt
    Untracked:  data/RA_full_coloc.txt
    Untracked:  data/TABLE1_hg19.txt
    Untracked:  data/TABLE1_hg19.txt.zip
    Untracked:  data/__MACOSX/
    Untracked:  data/coloc_blood_traits.csv
    Untracked:  data/crohns_disease_full_coloc.txt
    Untracked:  data/edit_sites_and_GE_neg_correlated.txt
    Untracked:  data/edit_sites_and_GE_pos_correlated.txt
    Untracked:  data/features
    Untracked:  data/human_EERs.csv
    Untracked:  data/human_EERs.txt
    Untracked:  data/lymph_full_coloc.txt
    Untracked:  data/m6A_TWAS_results.csv
    Untracked:  data/m6a_TWAS_genes.txt
    Untracked:  data/m6a_joint_calling_peaks.csv
    Untracked:  data/nasser_2021_ABC_IBD_genes.txt
    Untracked:  data/nat_sense_pairs.csv
    Untracked:  data/plt_full_coloc.txt
    Untracked:  data/rbc_full_coloc.txt
    Untracked:  data/rdw_full_coloc.txt
    Untracked:  data/reported_AS_targets_S1.txt
    Untracked:  data/reported_AS_wanowska.txt
    Untracked:  data/sig_coloc_results/
    Untracked:  data/test_locuscomparer.pdf
    Untracked:  data/ulcerative_colitis_full_coloc.txt
    Untracked:  data/wbc_full_coloc.txt
    Untracked:  data/zhao_silver_genes.csv
    Untracked:  output/.ipynb_checkpoints/
    Untracked:  output/HMGCR_gene_track_plot.pdf
    Untracked:  output/HMGCR_locus_plot.pdf
    Untracked:  output/all_m6a_sites_with_cisNATs.csv
    Untracked:  output/all_m6a_sites_with_paired_cisNATs_summary.csv
    Untracked:  output/all_m6a_sites_with_paired_cisNATs_summary_PP40.3.csv
    Untracked:  output/all_m6a_sites_with_paired_cisNATs_summary_PP40.5.csv
    Untracked:  output/all_m6a_sites_with_paired_cis_NATs.csv
    Untracked:  output/fine_mapped_m6AQTLs_TWAS_genes_highPP4.rds
    Untracked:  output/gene_summary.csv
    Untracked:  output/immune_related_m6A_targets.csv
    Untracked:  output/m6aQTL_dsRNAs_PPP2R3C_PRORP.pdf
    Untracked:  output/m6a_peaks_nearby_dsRNAs.csv
    Untracked:  output/m6a_sites_near_all_dsRNAs_twas.csv
    Untracked:  output/m6a_sites_near_dsRNAs_coloc.csv
    Untracked:  output/m6a_sites_near_dsRNAs_twas.csv
    Untracked:  output/m6a_sites_near_dsRNAs_twas_summary.csv
    Untracked:  output/m6a_sites_overlapping_NAT_twas.csv
    Untracked:  output/m6a_sites_overlapping_dsRNAs_coloc.csv
    Untracked:  output/m6a_sites_overlapping_dsRNAs_twas.csv
    Untracked:  output/m6a_sites_overlapping_dsRegions.csv
    Untracked:  output/m6a_sites_overlapping_dsRegions_coloc.csv
    Untracked:  output/negatively_correlated_genes.txt
    Untracked:  output/postively_correlated_genes.txt
    Untracked:  output/rs1806261_RABEP1-NUP88_focused_locusview.pdf
    Untracked:  output/rs1806261_RABEP1-NUP88_locusview.pdf
    Untracked:  output/rs3177647_MAPKAPK5-AS1-MAPKAPK5_locusview.pdf
    Untracked:  output/rs3204541_DDX55-EIF2B1_locusview.pdf
    Untracked:  output/rs7184802_ADCY7-BRD7_locusview.pdf
    Untracked:  output/rs7184802_ADCY7_locuscompare.pdf
    Untracked:  output/twas_genes_PP4_0.3_immune_traits_trackplots.pdf
    Untracked:  output/twas_genes_PP4_0.5_blood_traits_trackplots.pdf
    Untracked:  output/twas_m6a_sites_with_all_cisNATs.RDS
    Untracked:  output/twas_m6a_sites_with_cisNATs_range.RDS
    Untracked:  output/twas_m6a_sites_with_the_nearest_cisNAT.RDS
    Untracked:  twas_genes_PP4_0.3_immune_traits_trackplots.pdf

Unstaged changes:
    Modified:   analysis/m6A_switch_to_disease_h2g.Rmd
    Modified:   analysis/wbc_m6A_output.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/LDL_m6A_output_hg19.Rmd) and HTML (docs/LDL_m6A_output_hg19.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 08eaf44 Jing Gu 2023-08-16 run ctwas for multiple traits

Load ctwas results

# top 1 method
res <- impute_expr_z(z_snp, weight = weight, ld_R_dir = ld_R_dir,
                         method = NULL, outputdir = outputdir, outname = outname.e,
                         harmonize_z = T, harmonize_wgt = T, scale_by_ld_variance=F,
                         strand_ambig_action_z = "recover", 
                         recover_strand_ambig_wgt = T
# lasso/elastic-net method
res <- impute_expr_z(z_snp, weight = weight, ld_R_dir = ld_R_dir,
                         method = NULL, outputdir = outputdir, outname = outname.e,
                         harmonize_z = T, harmonize_wgt = T, scale_by_ld_variance=F,
                         strand_ambig_action_z = "none", 
                         recover_strand_ambig_wgt = F

GWAS: UK Biobank GWAS summary statistics - European individuals

Weights: FUSION weights using top1, lasso, or elastic-net models were converted into PredictDB format and were not needed to do scaling when running ctwas.

Check convergence of parameters

cTWAS analysis on m6A alone

[1] "Check convergence for the top1 model:"
[1] "Table of group size:"
    SNP    gene 
8713250     888 
                                SNP     gene
estimated_group_prior     7.333e-05 0.050687
estimated_group_prior_var 5.562e+01 7.859621
estimated_group_pve       1.034e-01 0.001030
attributable_group_pve    9.901e-01 0.009857
$top1

Joint analysis of expression, splicing and m6A

[1] "Check convergence for the top1 model when jointly analyzing expression, splicing and m6A:"
[1] "Table of group size before/after matching with UKBB SNPs:"
                          SNP      eQTL     sQTL   m6AQTL
prior_group_size    9.324e+06 2005.0000 2191.000 918.0000
group_size          8.713e+06 1928.0000 2123.000 888.0000
percent_of_overlaps 9.345e-01    0.9616    0.969   0.9673
                                SNP     eQTL    sQTL    m6AQTL
estimated_group_prior     5.872e-05 0.021347 0.03260 0.0290148
estimated_group_prior_var 6.634e+01 9.304196 6.55138 9.1182195
estimated_group_pve       9.878e-02 0.001114 0.00132 0.0006837
attributable_group_pve    9.694e-01 0.010937 0.01295 0.0067097
[1] "Check convergence for the lasso model when jointly analyzing expression, splicing and m6A:"
[1] "Table of group size before/after matching with UKBB SNPs:"
                          SNP      eQTL     sQTL   m6AQTL
prior_group_size    9.324e+06 2005.0000 2191.000 918.0000
group_size          8.713e+06 1998.0000 2180.000 912.0000
percent_of_overlaps 9.345e-01    0.9965    0.995   0.9935
                                SNP      eQTL      sQTL    m6AQTL
estimated_group_prior     9.786e-05 0.0116409 0.0239019 1.470e-02
estimated_group_prior_var 2.182e+01 7.4765802 5.1365664 1.663e+01
estimated_group_pve       5.414e-02 0.0005061 0.0007789 6.489e-04
attributable_group_pve    9.655e-01 0.0090243 0.0138897 1.157e-02
$top1


$lasso

cTWAS results for individual analysis with m6A

top1 model

   genename region_tag susie_pip       z
1     PMPCA       9_73    0.9816   6.364
2     PGAM5      12_82    0.9385   4.457
3     TAF6L      11_35    0.9366   4.016
4   C7orf50        7_2    0.9165  -4.260
5    RABEP1       17_5    0.8514  -3.553
6   TMEM199      17_17    0.8416  -6.098
7    MYL12B       18_3    0.8288   3.524
8     HERC1      15_29    0.7916  -2.865
9     TCTN3      10_61    0.7764   3.980
10      MVK      12_66    0.7549  -3.789
11   ICOSLG      21_22    0.7456  -3.467
12   VKORC1      16_24    0.7376  -3.587
13    POLD4      11_37    0.7330  -3.379
14   DIABLO      12_75    0.6965   3.143
15    HMGCR       5_44    0.6849 -19.989

Summing up PIPs for m6A peaks located in the same gene

Top m6A PIPs by genes

# A tibble: 22 × 2
   genename total_susie_pip
   <chr>              <dbl>
 1 ICOSLG             1.06 
 2 PMPCA              0.982
 3 RABEP1             0.969
 4 PGAM5              0.938
 5 TAF6L              0.937
 6 C7orf50            0.916
 7 TMEM199            0.842
 8 MYL12B             0.829
 9 HERC1              0.792
10 TCTN3              0.776
# ℹ 12 more rows

cTWAS results for joint analysis using a lasso model

Top m6A modification pip

Top expression/splicing/m6A units

For m6A or splicing QTLs, they are assigned to the nearest genes (m6A needs to be confirmed with Kevin).

Top SNPs or genes with PIP > 0.6

$eQTL
     genename susie_pip group region_tag
1987    ABHD8    0.9777  eQTL      19_14
1966    TRIM5    0.9565  eQTL       11_4
1960   SPRED2    0.9248  eQTL       2_42
1832   PCMTD2    0.6698  eQTL      20_38
911      CDK9    0.6393  eQTL       9_66

$m6AQTL
     genename susie_pip  group region_tag
5082  TMEM199    0.9698 m6AQTL      17_18
5078    PMPCA    0.9584 m6AQTL       9_73
5073     TAP2    0.7896 m6AQTL       6_27
4702    PGAM5    0.7499 m6AQTL      12_82
4905   MYL12B    0.7133 m6AQTL       18_3

$sQTL
     genename susie_pip group region_tag
4176   ABHD12    0.9996  sQTL      20_19
4135   SCAMP3    0.8896  sQTL       1_79
2453    GSK3B    0.7947  sQTL       3_74
4152     RAF1    0.7858  sQTL        3_9
3109   ENTPD1    0.6742  sQTL      10_61
2932      BLK    0.6438  sQTL       8_15
3082  ANAPC16    0.6368  sQTL      10_49

Top m6A modification pip

   genename region_tag susie_pip      z
1   TMEM199      17_18    0.9698 -6.649
2     PMPCA       9_73    0.9584  6.350
3      TAP2       6_27    0.7896 -8.346
4     PGAM5      12_82    0.7499  4.457
5    MYL12B       18_3    0.7133  3.653
6     POLD4      11_37    0.5925 -4.179
7   C7orf50        7_2    0.5123 -4.212
8     HERC1      15_29    0.5029 -3.818
9     TAF6L      11_35    0.4885  4.021
10     FGD3       9_47    0.2726 -3.213

Summing up PIPs for m6A peaks located in the same gene

Top 10 m6A PIPs by genes

# A tibble: 819 × 2
   genename total_susie_pip
   <chr>              <dbl>
 1 TMEM199            0.970
 2 PMPCA              0.958
 3 TAP2               0.790
 4 PGAM5              0.750
 5 MYL12B             0.713
 6 POLD4              0.593
 7 C7orf50            0.512
 8 HERC1              0.503
 9 TAF6L              0.488
10 DIDO1              0.283
# ℹ 809 more rows

Top splicing PIPs

                    peak_id genename       pos region_tag susie_pip      z
1   chr20:25275666-25282855   ABHD12  25260931      20_19    0.9996  6.644
2  chr1:155230450-155231448   SCAMP3 155149718       1_79    0.8896  4.305
3  chr3:119582452-119624602    GSK3B 119503971       3_74    0.7947 -5.789
4    chr3:12650834-12660014     RAF1  12574512        3_9    0.7858 -5.628
5   chr10:97602251-97602973   ENTPD1  97507473      10_61    0.6742 -4.590
6    chr8:11397080-11400733      BLK  11368731       8_15    0.6438  4.373
7   chr10:73980137-73983646  ANAPC16  73949708      10_49    0.6368  4.415
8    chr2:85823772-85824227   RNF181  85818886       2_54    0.5906  3.595
9    chr6:29691304-29691460    HLA-F  29644502       6_23    0.5565  5.293
10  chr12:53856351-53859716    PCBP2  53770941      12_33    0.5476  4.063

Summing up PIPs for spliced introns located in the same gene

Top 10 splicing PIPs by genes

# A tibble: 10 × 2
   genename total_susie_pip
   <chr>              <dbl>
 1 RMDN1               1.31
 2 LBP                 1.16
 3 WARS1               1.13
 4 SCAMP3              1.10
 5 ANAPC16             1.07
 6 ERGIC3              1.07
 7 HLA-F               1.05
 8 IFI44L              1.02
 9 CCT7                1.01
10 ABHD12              1.00

Top genes by combined PIP

     genename combined_pip expression_pip splicing_pip m6A_pip region_tag
2503    RMDN1        1.314        0.00000      1.31366 0.00000       8_62
1505    HLA-F        1.201        0.05645      1.05500 0.08978       6_23
1680      LBP        1.162        0.00000      1.16237 0.00000      20_23
3241    WARS1        1.160        0.03006      1.13042 0.00000      14_52
2623   SCAMP3        1.129        0.00000      1.10088 0.02771       1_79
149   ANAPC16        1.072        0.00000      1.07160 0.00000      10_49
1251   ERGIC3        1.066        0.00000      1.06575 0.00000      20_21
1552   IFI44L        1.053        0.00000      1.01540 0.03795       1_48
3095    TRIM5        1.043        0.95648      0.08641 0.00000       11_4
454      CCT7        1.010        0.00000      1.00965 0.00000       2_48
14     ABHD12        1.000        0.00000      0.99960 0.00000      20_19
18      ABHD8        0.978        0.97771      0.00000 0.00000      19_14
3010  TMEM199        0.970        0.00000      0.00000 0.96979      17_18
2259    PMPCA        0.958        0.00000      0.00000 0.95843       9_73
1572   IMMP1L        0.940        0.00000      0.94015 0.00000      11_21
1790   MCOLN2        0.933        0.03269      0.90027 0.00000       1_52
2815   SPRED2        0.925        0.92476      0.00000 0.00000       2_42
1928   MTERF4        0.909        0.03773      0.67259 0.19843      2_144
2809     SPG7        0.889        0.00000      0.81819 0.07106      16_54
1233   ENTPD1        0.886        0.02109      0.86474 0.00000      10_61
638      CTSH        0.858        0.18503      0.60610 0.06653      15_37
1862     MMAB        0.857        0.01508      0.84150 0.00000      12_67
1968  NADSYN1        0.855        0.13755      0.71720 0.00000      11_40
2942     TDP1        0.846        0.06640      0.77954 0.00000      14_45
310       BLK        0.825        0.00000      0.82520 0.00000       8_15
508     CENPU        0.795        0.09120      0.70348 0.00000      4_119
1439    GSK3B        0.795        0.00000      0.79472 0.00000       3_74
2910     TAP2        0.790        0.00000      0.00000 0.78964       6_27
2428     RAF1        0.786        0.00000      0.78581 0.00000        3_9
2166    PCBP2        0.776        0.00000      0.77585 0.00000      12_33
2801    SP140        0.774        0.00000      0.77396 0.00000      2_135
1689   LGALS8        0.763        0.00000      0.68077 0.08214      1_124
2560     RPL8        0.763        0.04376      0.71959 0.00000       8_94
3260    WDR91        0.756        0.02902      0.55332 0.17384       7_82
2201    PGAM5        0.750        0.00000      0.00000 0.74988      12_82
3073    TRAF1        0.733        0.00000      0.73315 0.00000       9_63
2889  SYNCRIP        0.716        0.00000      0.71582 0.00000       6_58
1953   MYL12B        0.713        0.00000      0.00000 0.71328       18_3
207     ARIH2        0.700        0.00000      0.63860 0.06122       3_35
471      CD46        0.700        0.00000      0.70025 0.00000      1_107
Loading required package: grid
Warning: replacing previous import 'utils::download.file' by
'restfulr::download.file' when loading 'rtracklayer'

Compared with the results from Zhao et al.

[1] "Table of combined PIPs for LCL silver standard genes:"
   genename combined_pip expression_pip splicing_pip m6A_pip region_tag
1     HMGCR        0.216        0.00000       0.0000 0.21569       5_44
2     VDAC1        0.174        0.00000       0.1738 0.00000       5_80
3      CETP        0.145        0.14520       0.0000 0.00000      16_31
4     DHCR7        0.129        0.00000       0.0000 0.12937      11_40
5      VAPA        0.087        0.00000       0.0868 0.00000       18_7
6      PLTP        0.082        0.08167       0.0000 0.00000      20_28
7      VAPB        0.061        0.06068       0.0000 0.00000      20_34
8    STARD3        0.054        0.05385       0.0000 0.00000      17_23
9      TNKS        0.035        0.02106       0.0000 0.01417       8_12
10     LIPA        0.030        0.02955       0.0000 0.00000      10_57
11    EPHX2        0.029        0.02887       0.0000 0.00000       8_27
12    ITIH4        0.027        0.02655       0.0000 0.00000       3_36
13     LDLR        0.000        0.00000       0.0000 0.00000      19_10
   annotation
1       known
2       known
3       known
4       known
5       known
6       known
7       known
8       known
9       known
10      known
11      known
12      known
13      known
[1] "Table of combined PIPs for LCL bystander genes:"
   genename combined_pip expression_pip splicing_pip m6A_pip region_tag
1   NADSYN1        0.855        0.13755       0.7172 0.00000      11_40
2      RAF1        0.786        0.00000       0.7858 0.00000        3_9
3     ACOT8        0.493        0.01311       0.4801 0.00000      20_28
4   ITGB3BP        0.469        0.03102       0.4381 0.00000       1_40
5      GNL3        0.435        0.00000       0.3376 0.09772       3_36
6     SMUG1        0.420        0.00000       0.2614 0.15811      12_33
7    NT5DC2        0.407        0.02316       0.3837 0.00000       3_36
8     YWHAB        0.327        0.07149       0.2553 0.00000      20_28
9     DNPEP        0.313        0.00000       0.3126 0.00000      2_129
10    NUMA1        0.306        0.00000       0.3062 0.00000      11_40
   annotation
1   bystander
2   bystander
3   bystander
4   bystander
5   bystander
6   bystander
7   bystander
8   bystander
9   bystander
10  bystander
[1] "Overlaps with previously identified high PIP genes that are either silver standard or bystander genes:"
  genename combined_pip expression_pip splicing_pip m6A_pip region_tag
1     USP1        0.094        0.02297       0.0712 0.00000       1_39
2     PLTP        0.082        0.08167       0.0000 0.00000      20_28
3     TNKS        0.035        0.02106       0.0000 0.01417       8_12
  annotation
1  bystander
2      known
3      known

Locus plots for specific examples

    genename combined_pip expression_pip splicing_pip m6A_pip region_tag
412    HMGCR        0.216              0            0  0.2157       5_44
    annotation
412      known


R version 4.2.0 (2022-04-22)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: CentOS Linux 7 (Core)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.3.13-el7-x86_64/lib/libopenblas_haswellp-r0.3.13.so

locale:
 [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C         LC_TIME=C           
 [4] LC_COLLATE=C         LC_MONETARY=C        LC_MESSAGES=C       
 [7] LC_PAPER=C           LC_NAME=C            LC_ADDRESS=C        
[10] LC_TELEPHONE=C       LC_MEASUREMENT=C     LC_IDENTIFICATION=C 

attached base packages:
[1] grid      stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] biomaRt_2.52.0       Gviz_1.40.1          cowplot_1.1.1       
 [4] ggplot2_3.4.3        GenomicRanges_1.48.0 GenomeInfoDb_1.32.2 
 [7] IRanges_2.30.1       S4Vectors_0.34.0     BiocGenerics_0.42.0 
[10] ctwas_0.1.38         dplyr_1.1.2          workflowr_1.7.0     

loaded via a namespace (and not attached):
  [1] colorspace_2.1-0            deldir_1.0-6               
  [3] rjson_0.2.21                rprojroot_2.0.3            
  [5] biovizBase_1.44.0           htmlTable_2.4.0            
  [7] XVector_0.36.0              base64enc_0.1-3            
  [9] fs_1.6.3                    dichromat_2.0-0.1          
 [11] rstudioapi_0.15.0           farver_2.1.1               
 [13] bit64_4.0.5                 AnnotationDbi_1.58.0       
 [15] fansi_1.0.4                 xml2_1.3.3                 
 [17] codetools_0.2-18            logging_0.10-108           
 [19] cachem_1.0.8                knitr_1.39                 
 [21] Formula_1.2-4               jsonlite_1.8.7             
 [23] Rsamtools_2.12.0            cluster_2.1.3              
 [25] dbplyr_2.3.3                png_0.1-7                  
 [27] compiler_4.2.0              httr_1.4.6                 
 [29] backports_1.4.1             lazyeval_0.2.2             
 [31] Matrix_1.6-1                fastmap_1.1.1              
 [33] cli_3.6.1                   later_1.3.0                
 [35] htmltools_0.5.2             prettyunits_1.1.1          
 [37] tools_4.2.0                 gtable_0.3.3               
 [39] glue_1.6.2                  GenomeInfoDbData_1.2.8     
 [41] rappdirs_0.3.3              Rcpp_1.0.11                
 [43] Biobase_2.56.0              jquerylib_0.1.4            
 [45] vctrs_0.6.3                 Biostrings_2.64.0          
 [47] rtracklayer_1.56.0          iterators_1.0.14           
 [49] xfun_0.30                   stringr_1.5.0              
 [51] ps_1.7.0                    lifecycle_1.0.3            
 [53] ensembldb_2.20.2            restfulr_0.0.14            
 [55] XML_3.99-0.14               getPass_0.2-2              
 [57] zlibbioc_1.42.0             scales_1.2.1               
 [59] BSgenome_1.64.0             VariantAnnotation_1.42.1   
 [61] ProtGenerics_1.28.0         hms_1.1.3                  
 [63] promises_1.2.0.1            MatrixGenerics_1.8.0       
 [65] parallel_4.2.0              SummarizedExperiment_1.26.1
 [67] AnnotationFilter_1.20.0     RColorBrewer_1.1-3         
 [69] yaml_2.3.5                  curl_5.0.2                 
 [71] memoise_2.0.1               gridExtra_2.3              
 [73] sass_0.4.1                  rpart_4.1.16               
 [75] latticeExtra_0.6-30         stringi_1.7.12             
 [77] RSQLite_2.3.1               highr_0.9                  
 [79] BiocIO_1.6.0                foreach_1.5.2              
 [81] checkmate_2.1.0             GenomicFeatures_1.48.4     
 [83] filelock_1.0.2              BiocParallel_1.30.3        
 [85] rlang_1.1.1                 pkgconfig_2.0.3            
 [87] matrixStats_0.62.0          bitops_1.0-7               
 [89] evaluate_0.15               lattice_0.20-45            
 [91] htmlwidgets_1.5.4           GenomicAlignments_1.32.0   
 [93] labeling_0.4.2              bit_4.0.5                  
 [95] processx_3.8.0              tidyselect_1.2.0           
 [97] magrittr_2.0.3              R6_2.5.1                   
 [99] generics_0.1.3              Hmisc_5.1-0                
[101] DelayedArray_0.22.0         DBI_1.1.3                  
[103] pgenlibr_0.3.6              pillar_1.9.0               
[105] whisker_0.4                 foreign_0.8-82             
[107] withr_2.5.0                 KEGGREST_1.36.2            
[109] RCurl_1.98-1.7              nnet_7.3-17                
[111] tibble_3.2.1                crayon_1.5.2               
[113] interp_1.1-4                utf8_1.2.3                 
[115] BiocFileCache_2.4.0         rmarkdown_2.14             
[117] jpeg_0.1-10                 progress_1.2.2             
[119] data.table_1.14.8           blob_1.2.4                 
[121] callr_3.7.3                 git2r_0.30.1               
[123] digest_0.6.33               httpuv_1.6.5               
[125] munsell_0.5.0               bslib_0.3.1