Last updated: 2023-08-11

Checks: 6 1

Knit directory: m6A_in_disease_genetics/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20230331) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.

absolute relative
~/projects/m6A_in_disease_genetics/code/ctwas/ctwas_config_b37.R code/ctwas/ctwas_config_b37.R
~/projects/m6A_in_disease_genetics/code/ctwas/qiansheng/locus_plot.R code/ctwas/qiansheng/locus_plot.R

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version d1d6b2a. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .ipynb_checkpoints/
    Ignored:    analysis/figure/
    Ignored:    analysis/m6A_switch_to_disease_h2g.nb.html
    Ignored:    data/plots/

Untracked files:
    Untracked:  analysis/.ipynb_checkpoints/
    Untracked:  analysis/IBD_E_S_m6A.Rmd
    Untracked:  analysis/IBD_E_S_m6A_output.Rmd
    Untracked:  analysis/LDL_E_S_m6A.Rmd
    Untracked:  analysis/LDL_m6A_output.Rmd
    Untracked:  analysis/RA_m6A_output.Rmd
    Untracked:  analysis/WhiteBlood_WholeBlood_E_M.Rmd
    Untracked:  analysis/lymph_m6A_output.Rmd
    Untracked:  analysis/lymph_m6A_output_hg19.Rmd
    Untracked:  analysis/pre_weights_m6AQTL.txt
    Untracked:  analysis/rbc_E_S_m6A_output.Rmd
    Untracked:  analysis/rbc_m6A_output.Rmd
    Untracked:  analysis/wbc_E_S_m6A_output.Rmd
    Untracked:  code/.ipynb_checkpoints/
    Untracked:  code/all_m6a_sites_with_paired_cisNATs_summary.csv
    Untracked:  code/check_double_strand.ipynb
    Untracked:  code/check_double_strand_v2.ipynb
    Untracked:  code/ctwas/
    Untracked:  code/figure/
    Untracked:  code/learn_gviz.Rmd
    Untracked:  code/learn_gviz.html
    Untracked:  code/learn_gviz.nb.html
    Untracked:  code/m6AQTL_finemapping.Rmd
    Untracked:  code/summary_TWAS_coloc_m6A_2023.Rmd
    Untracked:  code/test_gviz.ipynb
    Untracked:  code/twas_genes_PP4_0.3_immune_traits_trackplots.pdf
    Untracked:  data/.ipynb_checkpoints/
    Untracked:  data/ADCY7_gwas_input.tsv
    Untracked:  data/ADCY7_qtl_input.tsv
    Untracked:  data/Allergy_full_coloc.txt
    Untracked:  data/Asthma_full_coloc.txt
    Untracked:  data/CAD_full_coloc.txt
    Untracked:  data/Eosinophil_count_full_coloc.txt
    Untracked:  data/GSE125377_jointPeakReadCount.txt
    Untracked:  data/IBD_full_coloc.txt
    Untracked:  data/JointPeaks.bed
    Untracked:  data/Li2022_dsRNAs.xlsx
    Untracked:  data/Lupus_full_coloc.txt
    Untracked:  data/RA_full_coloc.txt
    Untracked:  data/TABLE1_hg19.txt
    Untracked:  data/TABLE1_hg19.txt.zip
    Untracked:  data/__MACOSX/
    Untracked:  data/coloc_blood_traits.csv
    Untracked:  data/crohns_disease_full_coloc.txt
    Untracked:  data/edit_sites_and_GE_neg_correlated.txt
    Untracked:  data/edit_sites_and_GE_pos_correlated.txt
    Untracked:  data/features
    Untracked:  data/human_EERs.csv
    Untracked:  data/human_EERs.txt
    Untracked:  data/lymph_full_coloc.txt
    Untracked:  data/m6A_TWAS_results.csv
    Untracked:  data/m6a_TWAS_genes.txt
    Untracked:  data/m6a_joint_calling_peaks.csv
    Untracked:  data/nat_sense_pairs.csv
    Untracked:  data/plt_full_coloc.txt
    Untracked:  data/rbc_full_coloc.txt
    Untracked:  data/rdw_full_coloc.txt
    Untracked:  data/reported_AS_targets_S1.txt
    Untracked:  data/reported_AS_wanowska.txt
    Untracked:  data/sig_coloc_results/
    Untracked:  data/test_locuscomparer.pdf
    Untracked:  data/ulcerative_colitis_full_coloc.txt
    Untracked:  data/wbc_full_coloc.txt
    Untracked:  output/.ipynb_checkpoints/
    Untracked:  output/all_m6a_sites_with_cisNATs.csv
    Untracked:  output/all_m6a_sites_with_paired_cisNATs_summary.csv
    Untracked:  output/all_m6a_sites_with_paired_cisNATs_summary_PP40.3.csv
    Untracked:  output/all_m6a_sites_with_paired_cisNATs_summary_PP40.5.csv
    Untracked:  output/all_m6a_sites_with_paired_cis_NATs.csv
    Untracked:  output/fine_mapped_m6AQTLs_TWAS_genes_highPP4.rds
    Untracked:  output/gene_summary.csv
    Untracked:  output/immune_related_m6A_targets.csv
    Untracked:  output/m6aQTL_dsRNAs_PPP2R3C_PRORP.pdf
    Untracked:  output/m6a_peaks_nearby_dsRNAs.csv
    Untracked:  output/m6a_sites_near_all_dsRNAs_twas.csv
    Untracked:  output/m6a_sites_near_dsRNAs_coloc.csv
    Untracked:  output/m6a_sites_near_dsRNAs_twas.csv
    Untracked:  output/m6a_sites_near_dsRNAs_twas_summary.csv
    Untracked:  output/m6a_sites_overlapping_NAT_twas.csv
    Untracked:  output/m6a_sites_overlapping_dsRNAs_coloc.csv
    Untracked:  output/m6a_sites_overlapping_dsRNAs_twas.csv
    Untracked:  output/m6a_sites_overlapping_dsRegions.csv
    Untracked:  output/m6a_sites_overlapping_dsRegions_coloc.csv
    Untracked:  output/negatively_correlated_genes.txt
    Untracked:  output/postively_correlated_genes.txt
    Untracked:  output/rs1806261_RABEP1-NUP88_focused_locusview.pdf
    Untracked:  output/rs1806261_RABEP1-NUP88_locusview.pdf
    Untracked:  output/rs3177647_MAPKAPK5-AS1-MAPKAPK5_locusview.pdf
    Untracked:  output/rs3204541_DDX55-EIF2B1_locusview.pdf
    Untracked:  output/rs7184802_ADCY7-BRD7_locusview.pdf
    Untracked:  output/rs7184802_ADCY7_locuscompare.pdf
    Untracked:  output/twas_genes_PP4_0.3_immune_traits_trackplots.pdf
    Untracked:  output/twas_genes_PP4_0.5_blood_traits_trackplots.pdf
    Untracked:  output/twas_m6a_sites_with_all_cisNATs.RDS
    Untracked:  output/twas_m6a_sites_with_cisNATs_range.RDS
    Untracked:  output/twas_m6a_sites_with_the_nearest_cisNAT.RDS
    Untracked:  twas_genes_PP4_0.3_immune_traits_trackplots.pdf

Unstaged changes:
    Modified:   analysis/m6A_switch_to_disease_h2g.Rmd
    Modified:   analysis/wbc_m6A_output.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/wbc_m6A_output_hg19.Rmd) and HTML (docs/wbc_m6A_output_hg19.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd d1d6b2a Jing Gu 2023-08-11 wflow_publish(c("analysis/wbc_m6A_output_hg19.Rmd", "analysis/index.Rmd",
Rmd c94ee10 Jing Gu 2023-08-11 wflow_publish(c("analysis/wbc_m6A_output_hg19.Rmd", "analysis/index.Rmd",

Load ctwas results

# top 1 method
res <- impute_expr_z(z_snp, weight = weight, ld_R_dir = ld_R_dir,
                         method = NULL, outputdir = outputdir, outname = outname.e,
                         harmonize_z = T, harmonize_wgt = T, scale_by_ld_variance=F,
                         strand_ambig_action_z = "recover", 
                         recover_strand_ambig_wgt = T
# lasso/elastic-net method
res <- impute_expr_z(z_snp, weight = weight, ld_R_dir = ld_R_dir,
                         method = NULL, outputdir = outputdir, outname = outname.e,
                         harmonize_z = T, harmonize_wgt = T, scale_by_ld_variance=F,
                         strand_ambig_action_z = "none", 
                         recover_strand_ambig_wgt = F

GWAS: UK Biobank GWAS summary statistics - European individuals

Weights: FUSION weights using top1, lasso, or elastic-net models were converted into PredictDB format and were not needed to do scaling when running ctwas.

Check convergence of parameters

cTWAS analysis on m6A alone

[1] "Check convergence for the top1 model:"
[1] "Table of group size:"
    SNP    gene 
8713250     888 
                                SNP      gene
estimated_group_prior     2.481e-04 1.227e-02
estimated_group_prior_var 1.920e+01 2.631e+01
estimated_group_pve       1.184e-01 8.178e-04
attributable_group_pve    9.931e-01 6.858e-03
[1] "Check convergence for the lasso model:"
[1] "Table of group size:"
    SNP    gene 
8713250     912 
                                SNP      gene
estimated_group_prior     2.414e-04 1.016e-02
estimated_group_prior_var 1.898e+01 3.699e+01
estimated_group_pve       1.139e-01 9.778e-04
attributable_group_pve    9.915e-01 8.513e-03
$top1


$lasso

Joint analysis of expression, splicing and m6A

[1] "Check convergence for the top1 model when jointly analyzing expression, splicing and m6A:"
[1] "Table of group size before/after matching with UKBB SNPs:"
                          SNP      eQTL     sQTL   m6AQTL
prior_group_size    9.324e+06 2005.0000 2191.000 918.0000
group_size          8.713e+06 1928.0000 2123.000 888.0000
percent_of_overlaps 9.345e-01    0.9616    0.969   0.9673
                                SNP      eQTL      sQTL    m6AQTL
estimated_group_prior     2.406e-04 8.895e-03  0.012934 1.236e-02
estimated_group_prior_var 1.858e+01 1.683e+01 36.589120 2.554e+01
estimated_group_pve       1.112e-01 8.236e-04  0.002867 7.999e-04
attributable_group_pve    9.612e-01 7.120e-03  0.024783 6.916e-03
$top1

cTWAS results from individual analysis on m6A

Lasso model

Top m6A modification pip

  genename region_tag susie_pip       z
1 SLC9A3R1      17_42    0.9473  -7.630
2  ZKSCAN5       7_61    0.7976   7.112
3    ADCY7      16_27    0.7817   4.382
4    TRIT1       1_25    0.7516   5.554
5  THEMIS2       1_19    0.7034   6.243
6   BTN3A3       6_20    0.6855 -13.445
7  WAC-AS1      10_20    0.6102  11.178

Summing up PIPs for m6A peaks located in the same gene

Top m6A PIPs by genes

# A tibble: 7 × 2
  genename total_susie_pip
  <chr>              <dbl>
1 SLC9A3R1           0.947
2 ZKSCAN5            0.798
3 ADCY7              0.782
4 TRIT1              0.752
5 THEMIS2            0.703
6 BTN3A3             0.686
7 WAC-AS1            0.615

Top expression/splicing/m6A units

For m6A or splicing QTLs, they are assigned to the nearest genes (m6A needs to be confirmed with Kevin).

Top SNPs or genes with PIP > 0.6

$eQTL
     genename susie_pip group region_tag
1913  CSNK1G1    0.9587  eQTL      15_29
1916 RAPGEFL1    0.7362  eQTL      17_23
132    NDUFS2    0.6213  eQTL       1_81

$m6AQTL
     genename susie_pip  group region_tag
4938 SLC9A3R1    0.9539 m6AQTL      17_42
4922  ZKSCAN5    0.7863 m6AQTL       7_61
4067  THEMIS2    0.7816 m6AQTL       1_19
4312    TRAM2    0.7091 m6AQTL       6_39

$sQTL
     genename susie_pip group region_tag
4000   RNF181    1.0000  sQTL       2_54
4011    MYO1G    0.9932  sQTL       7_33
2385    GSK3B    0.7962  sQTL       3_74
4033   PDLIM1    0.7387  sQTL      10_61
3788   ZNF428    0.6957  sQTL      19_30

Top m6A modification pip

ZKSCAN5: RNA Polymerase II Cis-Regulatory Region Sequence-Specific DNA Binding (GO:0000978). THEMIS2 is involved in the biological process T Cell Receptor Signaling Pathway (GO:0050852). BANF: DNA binding factor|Regulation Of Innate Immune Response (GO:0045088). TRIT1 has the molecular function of Catalytic Activity, Acting On A tRNA (GO:0140101). TRIT1 is involved in the biological process RNA Modification (GO:0009451). S1PR2 is involved in the biological process Regulation Of Cell Population Proliferation (GO:0042127). WAC has the molecular function of RNA Polymerase II Complex Binding (GO:0000993). CD320 is involved in the biological process Regulation Of B Cell Proliferation (GO:0030888).

   genename region_tag susie_pip      z
1  SLC9A3R1      17_42    0.9539 -7.630
2   ZKSCAN5       7_61    0.7863  7.158
3   THEMIS2       1_19    0.7816  6.277
4     TRAM2       6_39    0.7091  5.233
5     BANF1      11_36    0.5786  6.174
6     TRIT1       1_25    0.5278  5.298
7     S1PR2       19_9    0.5220  9.939
8   WAC-AS1      10_20    0.4945 11.169
9    SQSTM1      5_108    0.4934 -4.857
10    CD320       19_8    0.3627 -4.062

Summing up PIPs for m6A peaks located in the same gene

Top 10 m6A PIPs by genes

# A tibble: 800 × 2
   genename total_susie_pip
   <chr>              <dbl>
 1 SLC9A3R1           0.954
 2 ZKSCAN5            0.786
 3 THEMIS2            0.782
 4 TRAM2              0.709
 5 BANF1              0.579
 6 TRIT1              0.528
 7 S1PR2              0.522
 8 WAC-AS1            0.513
 9 SQSTM1             0.493
10 CD320              0.379
# ℹ 790 more rows

Top splicing PIPs

Some loci contain variants in the same credible set but having opposite z scores. For instance, the predicted splicing levels of two introns of CNN2 based on the same variant (position=1038445) have opposite associations with traits. Is this variant more likely to affect traits by altering the splicing levels of both transcripts, rather than one of them since they have equal PIP?

                    peak_id   genename       pos region_tag susie_pip       z
1    chr2:85823772-85824227     RNF181  85818886       2_54    1.0000   5.009
2    chr7:45009474-45009639      MYO1G  45009341       7_33    0.9932 -11.719
3  chr3:119582452-119624602      GSK3B 119542297       3_74    0.7962   5.622
4   chr10:97007123-97023621     PDLIM1  97023552      10_61    0.7387  -7.331
5   chr19:44112259-44118381     ZNF428  44146930      19_30    0.6957  -4.929
6  chr5:122111457-122130961       SNX2 122088686       5_74    0.5628  -6.687
7   chr11:67120548-67124214 AP003419.1  67185596      11_37    0.5416  -4.432
8    chr6:29693820-29694660      HLA-F  29688501       6_23    0.5000 -16.046
9    chr6:29694781-29695734      HLA-F  29688501       6_23    0.5000 -16.046
10  chr11:47761655-47765505      FNBP4  47863119      11_29    0.4878  10.101
11  chr19:13885521-13886291   C19orf53  13942221      19_11    0.4797   6.500
12  chr19:13886427-13888866   C19orf53  13942221      19_11    0.4797   6.500
13   chr7:72986365-72987174       TBL2  72989390       7_47    0.4741   6.870
14 chr1:224544695-224548197      CNIH4 224630695      1_116    0.4698   8.830
15    chr19:1036561-1037624       CNN2   1038445       19_2    0.4643   6.170
16    chr19:1036999-1037624       CNN2   1038445       19_2    0.4643  -6.170
17  chr17:47288203-47295101       ABI3  47287067      17_28    0.4626  -4.041
18  chr19:49458856-49459455        BAX  49459104      19_34    0.4605  -4.118
19     chr7:5569315-5570155       ACTB   5556807        7_7    0.4288  -4.696
20  chr16:67690548-67690704    CARMIL2  67780829      16_36    0.3912  -3.955

Summing up PIPs for spliced introns located in the same gene

Top 10 splicing PIPs by genes

# A tibble: 10 × 2
   genename total_susie_pip
   <chr>              <dbl>
 1 HLA-F              1.01 
 2 RNF181             1.00 
 3 MYO1G              0.993
 4 C19orf53           0.959
 5 CNN2               0.929
 6 CD46               0.904
 7 HNRNPK             0.811
 8 GSK3B              0.796
 9 ZNF428             0.748
10 PDLIM1             0.739

Top genes by combined PIP

     genename combined_pip expression_pip splicing_pip   m6A_pip region_tag
1456    HLA-F        1.006      6.563e-06       1.0057 1.512e-05       6_23
2437   RNF181        1.000      0.000e+00       1.0000 0.000e+00       2_54
1891    MYO1G        0.993      0.000e+00       0.9932 0.000e+00       7_33
349  C19orf53        0.982      0.000e+00       0.9594 2.284e-02      19_11
605   CSNK1G1        0.969      9.587e-01       0.0000 1.015e-02      15_29
2656 SLC9A3R1        0.954      0.000e+00       0.0000 9.539e-01      17_42
1468   HNRNPK        0.950      0.000e+00       0.8109 1.388e-01       9_41
548      CNN2        0.929      0.000e+00       0.9287 0.000e+00       19_2
454      CD46        0.904      0.000e+00       0.9044 0.000e+00      1_107
1392    GSK3B        0.796      0.000e+00       0.7962 0.000e+00       3_74
3218  ZKSCAN5        0.786      0.000e+00       0.0000 7.863e-01       7_61
2868  THEMIS2        0.782      0.000e+00       0.0000 7.816e-01       1_19
2986    TRAM2        0.755      4.565e-02       0.0000 7.091e-01       6_39
3252   ZNF428        0.748      0.000e+00       0.7475 0.000e+00      19_30
2114   PDLIM1        0.739      0.000e+00       0.7387 0.000e+00      10_61
2360 RAPGEFL1        0.736      7.362e-01       0.0000 0.000e+00      17_23
285    BCL2A1        0.706      0.000e+00       0.7064 0.000e+00      15_37
547     CNIH4        0.690      0.000e+00       0.6904 0.000e+00      1_116
277       BAX        0.653      0.000e+00       0.6532 0.000e+00      19_34
1944   NDUFS2        0.621      6.213e-01       0.0000 0.000e+00       1_81
Loading required package: grid
Warning: replacing previous import 'utils::download.file' by
'restfulr::download.file' when loading 'rtracklayer'

Locus plots for specific examples

     genename combined_pip expression_pip splicing_pip m6A_pip region_tag
1944   NDUFS2        0.621         0.6213            0       0       1_81

    genename combined_pip expression_pip splicing_pip m6A_pip region_tag
605  CSNK1G1        0.969         0.9587            0 0.01015      15_29
Warning in asMethod(object): sparse->dense coercion: allocating vector of size
1.1 GiB

     genename combined_pip expression_pip splicing_pip m6A_pip region_tag
2868  THEMIS2        0.782              0            0  0.7816       1_19

     genename combined_pip expression_pip splicing_pip m6A_pip region_tag
3218  ZKSCAN5        0.786              0            0  0.7863       7_61


R version 4.2.0 (2022-04-22)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: CentOS Linux 7 (Core)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.3.13-el7-x86_64/lib/libopenblas_haswellp-r0.3.13.so

locale:
 [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C         LC_TIME=C           
 [4] LC_COLLATE=C         LC_MONETARY=C        LC_MESSAGES=C       
 [7] LC_PAPER=C           LC_NAME=C            LC_ADDRESS=C        
[10] LC_TELEPHONE=C       LC_MEASUREMENT=C     LC_IDENTIFICATION=C 

attached base packages:
[1] grid      stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] Gviz_1.40.1          cowplot_1.1.1        ggplot2_3.4.2       
 [4] GenomicRanges_1.48.0 GenomeInfoDb_1.32.2  IRanges_2.30.1      
 [7] S4Vectors_0.34.0     BiocGenerics_0.42.0  ctwas_0.1.38        
[10] dplyr_1.1.2          workflowr_1.7.0     

loaded via a namespace (and not attached):
  [1] colorspace_2.1-0            deldir_1.0-6               
  [3] rjson_0.2.21                rprojroot_2.0.3            
  [5] biovizBase_1.44.0           htmlTable_2.4.0            
  [7] XVector_0.36.0              base64enc_0.1-3            
  [9] fs_1.6.3                    dichromat_2.0-0.1          
 [11] rstudioapi_0.15.0           farver_2.1.1               
 [13] bit64_4.0.5                 AnnotationDbi_1.58.0       
 [15] fansi_1.0.4                 xml2_1.3.3                 
 [17] codetools_0.2-18            logging_0.10-108           
 [19] cachem_1.0.8                knitr_1.39                 
 [21] Formula_1.2-4               jsonlite_1.8.7             
 [23] Rsamtools_2.12.0            cluster_2.1.3              
 [25] dbplyr_2.3.3                png_0.1-7                  
 [27] compiler_4.2.0              httr_1.4.6                 
 [29] backports_1.4.1             lazyeval_0.2.2             
 [31] Matrix_1.6-0                fastmap_1.1.1              
 [33] cli_3.6.1                   later_1.3.0                
 [35] htmltools_0.5.2             prettyunits_1.1.1          
 [37] tools_4.2.0                 gtable_0.3.3               
 [39] glue_1.6.2                  GenomeInfoDbData_1.2.8     
 [41] rappdirs_0.3.3              Rcpp_1.0.11                
 [43] Biobase_2.56.0              jquerylib_0.1.4            
 [45] vctrs_0.6.3                 Biostrings_2.64.0          
 [47] rtracklayer_1.56.0          iterators_1.0.14           
 [49] xfun_0.30                   stringr_1.5.0              
 [51] ps_1.7.0                    lifecycle_1.0.3            
 [53] ensembldb_2.20.2            restfulr_0.0.14            
 [55] XML_3.99-0.14               getPass_0.2-2              
 [57] zlibbioc_1.42.0             scales_1.2.1               
 [59] BSgenome_1.64.0             VariantAnnotation_1.42.1   
 [61] ProtGenerics_1.28.0         hms_1.1.3                  
 [63] promises_1.2.0.1            MatrixGenerics_1.8.0       
 [65] parallel_4.2.0              SummarizedExperiment_1.26.1
 [67] AnnotationFilter_1.20.0     RColorBrewer_1.1-3         
 [69] yaml_2.3.5                  curl_5.0.1                 
 [71] memoise_2.0.1               gridExtra_2.3              
 [73] sass_0.4.1                  biomaRt_2.52.0             
 [75] rpart_4.1.16                latticeExtra_0.6-30        
 [77] stringi_1.7.12              RSQLite_2.3.1              
 [79] highr_0.9                   BiocIO_1.6.0               
 [81] foreach_1.5.2               checkmate_2.1.0            
 [83] GenomicFeatures_1.48.4      filelock_1.0.2             
 [85] BiocParallel_1.30.3         rlang_1.1.1                
 [87] pkgconfig_2.0.3             matrixStats_0.62.0         
 [89] bitops_1.0-7                evaluate_0.15              
 [91] lattice_0.20-45             htmlwidgets_1.5.4          
 [93] GenomicAlignments_1.32.0    labeling_0.4.2             
 [95] bit_4.0.5                   processx_3.8.0             
 [97] tidyselect_1.2.0            magrittr_2.0.3             
 [99] R6_2.5.1                    generics_0.1.3             
[101] Hmisc_5.1-0                 DelayedArray_0.22.0        
[103] DBI_1.1.3                   pgenlibr_0.3.6             
[105] pillar_1.9.0                whisker_0.4                
[107] foreign_0.8-82              withr_2.5.0                
[109] KEGGREST_1.36.2             RCurl_1.98-1.7             
[111] nnet_7.3-17                 tibble_3.2.1               
[113] crayon_1.5.2                interp_1.1-4               
[115] utf8_1.2.3                  BiocFileCache_2.4.0        
[117] rmarkdown_2.14              jpeg_0.1-10                
[119] progress_1.2.2              data.table_1.14.8          
[121] blob_1.2.4                  callr_3.7.3                
[123] git2r_0.30.1                digest_0.6.33              
[125] httpuv_1.6.5                munsell_0.5.0              
[127] bslib_0.3.1