Last updated: 2018-08-08
workflowr checks: (Click a bullet for more information) ✔ R Markdown file: up-to-date
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
✔ Environment: empty
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
✔ Seed:
set.seed(12345)
The command set.seed(12345)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
✔ Session information: recorded
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
✔ Repository version: d2c5c34
wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Untracked files:
Untracked: analysis/table-s1.txt
Untracked: analysis/table-s2.txt
Untracked: code/tb-scratch.R
Untracked: data/counts_per_sample.txt
Untracked: docs/table-s1.txt
Untracked: docs/table-s2.txt
Untracked: factorial-dox.rds
Unstaged changes:
Modified: data/cll-eset.rds
Modified: data/cll-fit2.rds
Modified: data/cll.RData
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
3 different types of leukemias: ALL, AML, CML
library(Biobase)
library(leukemiasEset)
library(limma)
data("leukemiasEset")
eset <- leukemiasEset
dim(eset)
Features Samples
20172 60
head(fData(eset))
data frame with 0 columns and 6 rows
featureData(eset) <- AnnotatedDataFrame(data.frame(ensembl = rownames(exprs(eset)),
stringsAsFactors = FALSE))
head(fData(eset))
ensembl
1 ENSG00000000003
2 ENSG00000000005
3 ENSG00000000419
4 ENSG00000000457
5 ENSG00000000460
6 ENSG00000000938
exprs(eset)[1:5, 1:5]
GSM330151.CEL GSM330153.CEL GSM330154.CEL GSM330157.CEL
ENSG00000000003 3.386743 3.687029 3.360517 3.459388
ENSG00000000005 3.539030 3.836208 3.246327 3.063286
ENSG00000000419 9.822758 7.969170 9.457491 9.591018
ENSG00000000457 4.747283 4.866344 4.981642 5.982854
ENSG00000000460 3.307188 4.046402 5.529369 4.619444
GSM330171.CEL
ENSG00000000003 3.598589
ENSG00000000005 3.307543
ENSG00000000419 9.863687
ENSG00000000457 5.779449
ENSG00000000460 3.352696
head(pData(eset))
Project Tissue LeukemiaType LeukemiaTypeFullName
GSM330151.CEL Mile1 BoneMarrow ALL Acute Lymphoblastic Leukemia
GSM330153.CEL Mile1 BoneMarrow ALL Acute Lymphoblastic Leukemia
GSM330154.CEL Mile1 BoneMarrow ALL Acute Lymphoblastic Leukemia
GSM330157.CEL Mile1 BoneMarrow ALL Acute Lymphoblastic Leukemia
GSM330171.CEL Mile1 BoneMarrow ALL Acute Lymphoblastic Leukemia
GSM330174.CEL Mile1 BoneMarrow ALL Acute Lymphoblastic Leukemia
Subtype
GSM330151.CEL c_ALL/Pre_B_ALL without t(9 22)
GSM330153.CEL c_ALL/Pre_B_ALL without t(9 22)
GSM330154.CEL c_ALL/Pre_B_ALL without t(9 22)
GSM330157.CEL c_ALL/Pre_B_ALL without t(9 22)
GSM330171.CEL c_ALL/Pre_B_ALL without t(9 22)
GSM330174.CEL c_ALL/Pre_B_ALL without t(9 22)
table(pData(eset)[, "LeukemiaType"])
ALL AML CLL CML NoL
12 12 12 12 12
# Subset to only include ALL, AML, and CML
eset <- eset[, pData(eset)[, "LeukemiaType"] %in% c("ALL","AML", "CML")]
dim(eset)
Features Samples
20172 36
# Clean up names
phenoData(eset) <- AnnotatedDataFrame(data.frame(type = as.character(pData(eset)[, "LeukemiaType"]),
stringsAsFactors = FALSE))
head(pData(eset))
type
1 ALL
2 ALL
3 ALL
4 ALL
5 ALL
6 ALL
exprs(eset)[1:5, 1:5]
GSM330151.CEL GSM330153.CEL GSM330154.CEL GSM330157.CEL
ENSG00000000003 3.386743 3.687029 3.360517 3.459388
ENSG00000000005 3.539030 3.836208 3.246327 3.063286
ENSG00000000419 9.822758 7.969170 9.457491 9.591018
ENSG00000000457 4.747283 4.866344 4.981642 5.982854
ENSG00000000460 3.307188 4.046402 5.529369 4.619444
GSM330171.CEL
ENSG00000000003 3.598589
ENSG00000000005 3.307543
ENSG00000000419 9.863687
ENSG00000000457 5.779449
ENSG00000000460 3.352696
colnames(eset) <- sprintf("sample_%02d", 1:ncol(eset))
exprs(eset)[1:5, 1:5]
sample_01 sample_02 sample_03 sample_04 sample_05
ENSG00000000003 3.386743 3.687029 3.360517 3.459388 3.598589
ENSG00000000005 3.539030 3.836208 3.246327 3.063286 3.307543
ENSG00000000419 9.822758 7.969170 9.457491 9.591018 9.863687
ENSG00000000457 4.747283 4.866344 4.981642 5.982854 5.779449
ENSG00000000460 3.307188 4.046402 5.529369 4.619444 3.352696
dim(eset)
Features Samples
20172 36
head(pData(eset), 3)
type
sample_01 ALL
sample_02 ALL
sample_03 ALL
table(pData(eset)[, "type"])
ALL AML CML
12 12 12
design <- model.matrix(~0 + type, data = pData(eset))
head(design, 3)
typeALL typeAML typeCML
sample_01 1 0 0
sample_02 1 0 0
sample_03 1 0 0
colSums(design)
typeALL typeAML typeCML
12 12 12
Tests:
cm <- makeContrasts(AMLvALL = typeAML - typeALL,
CMLvALL = typeCML - typeALL,
CMLvAML = typeCML - typeAML,
levels = design)
cm
Contrasts
Levels AMLvALL CMLvALL CMLvAML
typeALL -1 -1 0
typeAML 1 0 -1
typeCML 0 1 1
# Fit coefficients
fit <- lmFit(eset, design)
# Fit contrasts
fit2 <- contrasts.fit(fit, contrasts = cm)
# Calculate t-statistics
fit2 <- eBayes(fit2)
# Summarize results
results <- decideTests(fit2)
summary(results)
AMLvALL CMLvALL CMLvAML
-1 898 3401 1890
0 18323 13194 16408
1 951 3577 1874
sessionInfo()
R version 3.4.4 (2018-03-15)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.1 LTS
Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.7.1
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.7.1
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] parallel stats graphics grDevices utils datasets methods
[8] base
other attached packages:
[1] limma_3.32.2 leukemiasEset_1.12.0 Biobase_2.36.2
[4] BiocGenerics_0.22.1
loaded via a namespace (and not attached):
[1] workflowr_1.1.1.9000 Rcpp_0.12.18 digest_0.6.15
[4] rprojroot_1.3-2 R.methodsS3_1.7.1 backports_1.1.2-9000
[7] git2r_0.23.0 magrittr_1.5 evaluate_0.11
[10] stringi_1.2.4 whisker_0.3-2 R.oo_1.22.0
[13] R.utils_2.6.0 rmarkdown_1.10 tools_3.4.4
[16] stringr_1.3.1 yaml_2.2.0 compiler_3.4.4
[19] htmltools_0.3.6 knitr_1.20
This reproducible R Markdown analysis was created with workflowr 1.1.1.9000