Last updated: 2018-08-20

workflowr checks: (Click a bullet for more information)
  • R Markdown file: up-to-date

    Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

  • Environment: empty

    Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

  • Seed: set.seed(12345)

    The command set.seed(12345) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

  • Session information: recorded

    Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

  • Repository version: 1526cb1

    Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

    Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
    
    Ignored files:
        Ignored:    .Rhistory
        Ignored:    .Rproj.user/
    
    Untracked files:
        Untracked:  code/counts_per_sample.txt
        Untracked:  code/table-s1.txt
        Untracked:  docs/figure/linear-models.Rmd/
    
    
    Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Expand here to see past versions:
    File Version Author Date Message
    Rmd 1920833 John Blischak 2018-08-20 Refactor first edition of chapter 1 into distinct lessons.


Introduction

The simulation and visualizations below demonsrate the differences in the results due to limma sharing information across genes to shrink the estimates of the variance.

Setup

library("cowplot")
library("dplyr")
library("ggplot2")
theme_set(theme_classic(base_size = 16))
library("knitr")
opts_chunk$set(fig.width = 10, fig.height = 5, message = FALSE)
library("stringr")
library("tidyr")

Simulation

Create some synthetic data for illustrating concepts. The simulated gene expression matrix has 100 genes and 6 samples (3 treatment and 3 control).

set.seed(12345)
create_exp_mat <- function(n1, n2, ng,
                           alpha_mean, beta_mean, epsilon_sd) {
  status <- c(rep(0, n1), rep(1, n2))
  ns <- length(status)
  status <- matrix(status, nrow = 1)

  alpha <- rnorm(ng, mean = alpha_mean, sd = 1)
  beta <- matrix(rnorm(ng, mean = beta_mean, sd = 1), ncol = 1)
  epsilon <- matrix(rnorm(ng * ns, mean = 0, sd = epsilon_sd),
                    nrow = ng, ncol = ns)
  Yg <- alpha + beta %*% status + epsilon
  return(Yg)
}

gexp <- rbind(
  # 30 non-DE genes with high variance
  create_exp_mat(n1 = 3, n2 = 3, ng = 30, alpha_mean = 10, beta_mean = -1:1, epsilon_sd = 3),
  # 30 non-DE genes with low variance
  create_exp_mat(n1 = 3, n2 = 3, ng = 30, alpha_mean = 10, beta_mean = -1:1, epsilon_sd = 1),
  # 10 upregulated DE genes with low variance
  create_exp_mat(n1 = 3, n2 = 3, ng = 10, alpha_mean = 10, beta_mean = 5, epsilon_sd = 1),
  # 10 upregulated DE genes with high variance
  create_exp_mat(n1 = 3, n2 = 3, ng = 10, alpha_mean = 10, beta_mean = 5, epsilon_sd = 3),
  # 10 downregulated DE genes with low variance
  create_exp_mat(n1 = 3, n2 = 3, ng = 10, alpha_mean = 10, beta_mean = -5, epsilon_sd = 1),
  # 10 downregulated DE genes with high variance
  create_exp_mat(n1 = 3, n2 = 3, ng = 10, alpha_mean = 10, beta_mean = -5, epsilon_sd = 3)
)

# Add names for samples
group <- rep(c("con", "treat"), each = ncol(gexp) / 2)
samples <- paste0(group, 1:3)
colnames(gexp) <- samples

# Add names for genes
genes <- sprintf("gene%02d", 1:nrow(gexp))
rownames(gexp) <- genes

heatmap(gexp)

Standard linear model

Find differentially expressed genes using a standard linear model.

lm_beta <- numeric(length = nrow(gexp))
lm_se <- numeric(length = nrow(gexp))
lm_p <- numeric(length = nrow(gexp))
for (i in 1:length(lm_p)) {
  mod <- lm(gexp[i, ] ~ group)
  result <- summary(mod)
  lm_beta[i] <- result$coefficients[2, 1]
  lm_se[i] <- result$coefficients[2, 2]
  lm_p[i] <- result$coefficients[2, 4]
}
hist(lm_p, xlab = "p-values", main = "Standard linear model")

limma linear model

Find differentially expressed genes using limma.

library("limma")
design <- model.matrix(~group)
colnames(design) <- c("Intercept", "treat")
fit <- lmFit(gexp, design)
head(fit$coefficients)
       Intercept      treat
gene01 11.316083 -2.4577980
gene02  9.833304  2.7130980
gene03 12.653098 -0.2048963
gene04 12.275601  0.2934781
gene05  8.617135  2.3383110
gene06  5.878178  3.9361382
fit <- eBayes(fit)
results <- decideTests(fit[, 2])
summary(results)
       treat
Down      15
NotSig    71
Up        14
stats <- topTable(fit, coef = "treat", number = nrow(fit), sort.by = "none")
hist(stats[, "P.Value"], xlab = "p-values", main = "limma linear model")

Comparison

Compare the p-values from lm and limma (both adjusted for multiple testing with the BH FDR).

stats <- cbind(stats,
               sd = apply(gexp, 1, sd),
               var = apply(gexp, 1, var),
               lm_beta, lm_se,
               lm_p = p.adjust(lm_p, method = "BH"))

stats$labels_pre <- c(rep("non-DE; high-var", 30),
                      rep("non-DE; low-var", 30),
                      rep("DE-up; low-var", 10),
                      rep("DE-up; high-var", 10),
                      rep("DE-down; low-var", 10),
                      rep("DE-down; high-var", 10))

stats$labels <- rep("non-DE", nrow(stats))
stats$labels[stats$adj.P.Val < 0.05 & stats$lm_p < 0.05] <- "DE"
stats$labels[stats$adj.P.Val < 0.05 & stats$lm_p >= 0.05] <- "limma-only"
stats$labels[stats$adj.P.Val >= 0.05 & stats$lm_p < 0.05] <- "lm-only"
table(stats$labels)

        DE limma-only    lm-only     non-DE 
        22          7          3         68 
table(stats$labels, stats$labels_pre)
            
             DE-down; high-var DE-down; low-var DE-up; high-var
  DE                         0                7               3
  limma-only                 1                3               1
  lm-only                    0                0               0
  non-DE                     9                0               6
            
             DE-up; low-var non-DE; high-var non-DE; low-var
  DE                      9                0               3
  limma-only              1                1               0
  lm-only                 0                0               3
  non-DE                  0               29              24
stopifnot(stats$logFC == stats$lm_beta)

de <- data.frame(effect_size = stats$lm_beta,
                 std_dev = stats$sd,
                 lm = stats$lm_p < 0.05,
                 limma = stats$adj.P.Val < 0.05)

head(de)
  effect_size  std_dev    lm limma
1  -2.4577980 3.750555 FALSE FALSE
2   2.7130980 3.353835 FALSE FALSE
3  -0.2048963 1.715542 FALSE FALSE
4   0.2934781 3.511502 FALSE FALSE
5   2.3383110 1.955378 FALSE FALSE
6   3.9361382 3.326517 FALSE FALSE
# View the number of discrepancies
table(de$lm, de$limma)
       
        FALSE TRUE
  FALSE    68    7
  TRUE      3   22
# Plot effect size (y-axis) vs. standard deviation (x-axis)
ggplot(de, aes(x = std_dev, y = effect_size, color = limma)) +
  geom_point()

ggplot(stats, aes(x = sd, y = logFC, color = labels)) +
  geom_point()

ggplot(stats, aes(x = logFC, y = -log10(P.Value), color = labels)) +
  geom_point()

Example genes

Visualize example genes with boxplots. Note that the limma-only gene has higher variance compared to the lm-only gene.

# Find a good example of a DE gene
index <- which(stats$labels_pre == "DE-up; low-var" & stats$labels == "DE")[1]
single_gene <- gexp %>% as.data.frame %>%
  slice(index) %>%
  gather(key = "group", value = "gene") %>%
  mutate(group = str_extract(group, "[a-z]*")) %>%
  as.data.frame()

# Find a gene that is DE for both, DE for lm-only, and DE for limma-only
de_not <- de_lm <- which(stats$labels == "non-DE" &
                           stats$labels_pre == "non-DE; high-var" &
                           stats$logFC > 0)[1]
de_both <- which(stats$labels == "DE" &
                   stats$labels_pre == "DE-up; low-var")[1]
de_lm <- which(stats$labels == "lm-only" &
                 stats$labels_pre == "non-DE; low-var" &
                 stats$logFC > 0)[1]
de_limma <- which(stats$labels == "limma-only" &
                    stats$labels_pre == "DE-up; high-var")[1]

compare <- gexp %>%
  as.data.frame() %>%
  slice(c(de_not, de_both, de_lm, de_limma)) %>%
  mutate(type = c("neither", "both", "lm-only", "limma-only")) %>%
  gather(key = "group", value = "gene", con1:treat3) %>%
  mutate(group = str_extract(group, "[a-z]*")) %>%
  as.data.frame()

head(compare)
        type group      gene
1    neither   con  6.681872
2       both   con  8.555641
3    lm-only   con  9.959914
4 limma-only   con 11.391149
5    neither   con  8.144218
6       both   con  7.977472
# Plot gene expression (gene; y-axis) vs. group (x-axis)
ggplot(compare, aes(x = group, y = gene)) +
  geom_boxplot() +
  facet_wrap(~type, nrow = 1)

Session information

sessionInfo()
R version 3.5.0 (2018-04-23)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 17134)

Matrix products: default

locale:
[1] LC_COLLATE=English_United States.1252 
[2] LC_CTYPE=English_United States.1252   
[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C                          
[5] LC_TIME=English_United States.1252    

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] bindrcpp_0.2.2 limma_3.36.1   tidyr_0.8.1    stringr_1.3.1 
[5] knitr_1.20     dplyr_0.7.5    cowplot_0.9.2  ggplot2_2.2.1 

loaded via a namespace (and not attached):
 [1] Rcpp_0.12.17      compiler_3.5.0    pillar_1.2.3     
 [4] git2r_0.21.0      plyr_1.8.4        workflowr_1.1.1  
 [7] bindr_0.1.1       R.methodsS3_1.7.1 R.utils_2.6.0    
[10] tools_3.5.0       digest_0.6.15     evaluate_0.10.1  
[13] tibble_1.4.2      gtable_0.2.0      pkgconfig_2.0.1  
[16] rlang_0.2.1       yaml_2.1.19       rprojroot_1.3-2  
[19] grid_3.5.0        tidyselect_0.2.4  glue_1.2.0       
[22] R6_2.2.2          rmarkdown_1.10    purrr_0.2.5      
[25] magrittr_1.5      whisker_0.3-2     backports_1.1.2  
[28] scales_0.5.0      htmltools_0.3.6   assertthat_0.2.0 
[31] colorspace_1.3-2  labeling_0.3      stringi_1.2.3    
[34] lazyeval_0.2.1    munsell_0.5.0     R.oo_1.22.0      

This reproducible R Markdown analysis was created with workflowr 1.1.1