Last updated: 2018-01-26

Code version: d61faa9

Analyze proteomics data set that compares 2 groups.

library("Biobase")
library("ggplot2")
library("limma")
eset <- readRDS("../data/ch02.rds")

Studies with 2 groups (Video)

Describe the scientific question, the experimental design, and the data collected for the 2-group study. Introduce the ExpressionSet object that contains the data. Review the quality control procedures covered in past Bioconductor courses (specifically comparing distributions and PCA).

Plot a differentially expressed gene

Create boxplots of a few pre-selected genes (one clearly DE, one clearly not, and one in between). Use pData to select the phenotype variables and exprs to access the expression data.

boxplot(exprs(eset)[3, ] ~ pData(eset)$spikein, main = fData(eset)$protein[3])

boxplot(exprs(eset)[5, ] ~ pData(eset)$spikein, main = fData(eset)$protein[5])

boxplot(exprs(eset)[463, ] ~ pData(eset)$spikein, main = fData(eset)$protein[463])

Create a density plot to compare distribution across samples

Use limma::plotDensities to confirm that the distribution of gene expression levels is consistent across the samples.

plotDensities(exprs(eset), legend = FALSE)

Create a PCA plot to assess source of variation

Use prcomp to compute principal components and then plot PC1 vs. PC2 to confirm that the biological effect is the main source of variation.

pca <- prcomp(t(exprs(eset)[1:7, ]), scale. = TRUE)
plot(pca)

d <- data.frame(pData(eset), pca$x)
ggplot(d, aes(x = PC1, y = PC2, color = spikein)) +
  geom_point()

limma for differential expression (Video)

Describe the standard limma workflow. Describe the 2 main techniques for constructing the linear model: treatment-contrasts versus group-means parametrizations.

Create design matrix for treatment-contrasts parametrization

Use model.matrix to create a linear model with an intercept and one binary variable. Use colSums to reason about how this relates to the samples (e.g. the intercept represents the mean across samples because it is 1 for every sample).

design <- model.matrix(~spikein, data = pData(eset))
colSums(design)
  (Intercept) spikein25fmol 
            6             3 

Fit and test model for treatment-contrasts parametrization

Use limma::lmFit, limma::eBayes, and limma::decideTests to fit and test the model.

fit <- lmFit(eset, design)
head(fit$coefficients)
  (Intercept) spikein25fmol
1    21.19598   0.134121520
2    32.48541  -0.004568881
3    29.78624   1.559134985
4    25.25850   0.706384928
5    29.30042  -0.009631149
6    22.12669   1.089862564
fit <- eBayes(fit)
results <- decideTests(fit[, 2])
summary(results)
   spikein25fmol
-1             9
0           1879
1             56

Create design matrix and contrasts matrix for group-means parametrization

Use model.matrix to create a linear model with two binary variables (and no intercept). Use colSums to reason about how this relates to the samples (e.g. each of the terms represents the mean for its group of samples because it is the only term that is 1 for those samples). Use limma::makeContrasts to create a contrasts matrix based on this new linear model.

design <- model.matrix(~0 + spikein, data = pData(eset))
colSums(design)
spikein10fmol spikein25fmol 
            3             3 
cont_mat <- makeContrasts(spike_effect = spikein25fmol - spikein10fmol,
                          levels = design)
cont_mat
               Contrasts
Levels          spike_effect
  spikein10fmol           -1
  spikein25fmol            1

Fit and test model for group-means parametrization

Use limma::lmFit, limma::contrasts.fit, limma::eBayes, and limma::decideTests to fit and test the model. Confirm that the results are identical to the more traditional linear modelling approach used previously.

fit <- lmFit(eset, design)
head(fit$coefficients)
  spikein10fmol spikein25fmol
1      21.19598      21.33010
2      32.48541      32.48084
3      29.78624      31.34538
4      25.25850      25.96488
5      29.30042      29.29079
6      22.12669      23.21656
fit2 <- contrasts.fit(fit, contrasts = cont_mat)
head(fit2$coefficients)
   Contrasts
    spike_effect
  1  0.134121520
  2 -0.004568881
  3  1.559134985
  4  0.706384928
  5 -0.009631149
  6  1.089862564
fit2 <- eBayes(fit2)
results <- decideTests(fit2)
summary(results)
   spike_effect
-1            9
0          1879
1            56

Visualizing the results (Video)

Describe how to access the results with topTable and describe the columns. Demonstrate some common visualizations.

Create a histogram of p-values

Use geom_histogram to plot P.Value column from limma::topTable. Ask question to confirm they understand that the p-value distribution corresponds to the number of differentially expressed genes identified.

topTable(fit2)
                                                                  protein
33                           P06396upsedyp|GELS_HUMAN_upsedyp;CON__Q3SX14
34                                       P06732upsedyp|KCRM_HUMAN_upsedyp
29                                       P02787upsedyp|TRFE_HUMAN_upsedyp
53                P68871upsedyp|HBB_HUMAN_upsedyp;CON__Q3SX09;CON__P02070
30               P02788upsedyp|TRFL_HUMAN_upsedyp;CON__Q29443;CON__Q0IIK2
39                                       P10599upsedyp|THIO_HUMAN_upsedyp
15                                      P00709upsedyp|LALBA_HUMAN_upsedyp
42                                       P15559upsedyp|NQO1_HUMAN_upsedyp
11                                      O00762upsedyp|UBE2C_HUMAN_upsedyp
3  P02768upsedyp|ALBU_HUMAN_upsedyp;CON__P02768-1;CON__P02769;CON__Q3SZ57
      logFC  AveExpr        t      P.Value    adj.P.Val        B
33 1.861560 29.47426 27.52384 5.176104e-07 0.0002584916 7.311601
34 1.534331 29.14056 27.01624 5.719561e-07 0.0002584916 7.221913
29 1.596815 30.67280 26.77212 6.004868e-07 0.0002584916 7.177897
53 1.485236 28.84136 25.03177 8.609292e-07 0.0002584916 6.846476
30 1.502014 31.02911 24.79491 9.059136e-07 0.0002584916 6.798845
39 1.473717 28.31979 24.30523 1.008053e-06 0.0002584916 6.698332
15 1.468805 28.42487 24.18606 1.034938e-06 0.0002584916 6.673445
42 1.541838 27.32908 23.91733 1.098739e-06 0.0002584916 6.616701
11 1.554906 28.71986 23.25450 1.277099e-06 0.0002584916 6.472931
3  1.559135 30.56581 23.07978 1.329689e-06 0.0002584916 6.434105
stats <- topTable(fit2, number = nrow(fit2), sort.by = "none")
ggplot(stats, aes(x = P.Value)) +
  geom_histogram()
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Create a volcano plot

Use geom_point() to plot -log10(P.Value) vs. logFC. Mention limma::volcanoPlot after exercise is completed.

ggplot(stats, aes(x = logFC, y = -log10(P.Value))) +
  geom_point()

Session information

sessionInfo()
R version 3.4.3 (2017-11-30)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 17.10

Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.7.1
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.7.1

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] parallel  stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
[1] limma_3.32.2        ggplot2_2.2.1       Biobase_2.36.2     
[4] BiocGenerics_0.22.1

loaded via a namespace (and not attached):
 [1] Rcpp_0.12.14     knitr_1.18       magrittr_1.5     munsell_0.4.3   
 [5] colorspace_1.3-2 rlang_0.1.6.9003 stringr_1.2.0    plyr_1.8.4      
 [9] tools_3.4.3      grid_3.4.3       gtable_0.2.0     git2r_0.21.0    
[13] htmltools_0.3.6  yaml_2.1.16      lazyeval_0.2.1   rprojroot_1.3-2 
[17] digest_0.6.14    tibble_1.4.2     evaluate_0.10.1  rmarkdown_1.8   
[21] labeling_0.3     stringi_1.1.6    compiler_3.4.3   pillar_1.1.0    
[25] scales_0.5.0     backports_1.1.2 

This R Markdown site was created with workflowr