Last updated: 2018-08-20
workflowr checks: (Click a bullet for more information) ✔ R Markdown file: up-to-date
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
✔ Environment: empty
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
✔ Seed:
set.seed(12345)
The command set.seed(12345)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
✔ Session information: recorded
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
✔ Repository version: fcc513c
wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Untracked files:
Untracked: code/counts_per_sample.txt
Untracked: code/table-s1.txt
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
The simulation and visualizations below demonsrate the differences in the results due to limma sharing information across genes to shrink the estimates of the variance.
library("cowplot")
library("dplyr")
library("ggplot2")
theme_set(theme_classic(base_size = 16))
library("knitr")
opts_chunk$set(fig.width = 10, fig.height = 5, message = FALSE)
library("stringr")
library("tidyr")
Create some synthetic data for illustrating concepts. The simulated gene expression matrix has 100 genes and 6 samples (3 treatment and 3 control).
set.seed(12345)
create_exp_mat <- function(n1, n2, ng,
alpha_mean, beta_mean, epsilon_sd) {
status <- c(rep(0, n1), rep(1, n2))
ns <- length(status)
status <- matrix(status, nrow = 1)
alpha <- rnorm(ng, mean = alpha_mean, sd = 1)
beta <- matrix(rnorm(ng, mean = beta_mean, sd = 1), ncol = 1)
epsilon <- matrix(rnorm(ng * ns, mean = 0, sd = epsilon_sd),
nrow = ng, ncol = ns)
Yg <- alpha + beta %*% status + epsilon
return(Yg)
}
gexp <- rbind(
# 30 non-DE genes with high variance
create_exp_mat(n1 = 3, n2 = 3, ng = 30, alpha_mean = 10, beta_mean = -1:1, epsilon_sd = 3),
# 30 non-DE genes with low variance
create_exp_mat(n1 = 3, n2 = 3, ng = 30, alpha_mean = 10, beta_mean = -1:1, epsilon_sd = 1),
# 10 upregulated DE genes with low variance
create_exp_mat(n1 = 3, n2 = 3, ng = 10, alpha_mean = 10, beta_mean = 5, epsilon_sd = 1),
# 10 upregulated DE genes with high variance
create_exp_mat(n1 = 3, n2 = 3, ng = 10, alpha_mean = 10, beta_mean = 5, epsilon_sd = 3),
# 10 downregulated DE genes with low variance
create_exp_mat(n1 = 3, n2 = 3, ng = 10, alpha_mean = 10, beta_mean = -5, epsilon_sd = 1),
# 10 downregulated DE genes with high variance
create_exp_mat(n1 = 3, n2 = 3, ng = 10, alpha_mean = 10, beta_mean = -5, epsilon_sd = 3)
)
# Add names for samples
group <- rep(c("con", "treat"), each = ncol(gexp) / 2)
samples <- paste0(group, 1:3)
colnames(gexp) <- samples
# Add names for genes
genes <- sprintf("gene%02d", 1:nrow(gexp))
rownames(gexp) <- genes
heatmap(gexp)
Version | Author | Date |
---|---|---|
4976490 | John Blischak | 2018-08-20 |
Find differentially expressed genes using a standard linear model.
lm_beta <- numeric(length = nrow(gexp))
lm_se <- numeric(length = nrow(gexp))
lm_p <- numeric(length = nrow(gexp))
for (i in 1:length(lm_p)) {
mod <- lm(gexp[i, ] ~ group)
result <- summary(mod)
lm_beta[i] <- result$coefficients[2, 1]
lm_se[i] <- result$coefficients[2, 2]
lm_p[i] <- result$coefficients[2, 4]
}
hist(lm_p, xlab = "p-values", main = "Standard linear model")
Version | Author | Date |
---|---|---|
4976490 | John Blischak | 2018-08-20 |
Find differentially expressed genes using limma.
library("limma")
design <- model.matrix(~group)
colnames(design) <- c("Intercept", "treat")
fit <- lmFit(gexp, design)
head(fit$coefficients)
Intercept treat
gene01 11.316083 -2.4577980
gene02 9.833304 2.7130980
gene03 12.653098 -0.2048963
gene04 12.275601 0.2934781
gene05 8.617135 2.3383110
gene06 5.878178 3.9361382
fit <- eBayes(fit)
results <- decideTests(fit[, 2])
summary(results)
treat
Down 15
NotSig 71
Up 14
stats <- topTable(fit, coef = "treat", number = nrow(fit), sort.by = "none")
hist(stats[, "P.Value"], xlab = "p-values", main = "limma linear model")
Version | Author | Date |
---|---|---|
4976490 | John Blischak | 2018-08-20 |
Compare the p-values from lm
and limma
(both adjusted for multiple testing with the BH FDR).
stats <- cbind(stats,
sd = apply(gexp, 1, sd),
var = apply(gexp, 1, var),
lm_beta, lm_se,
lm_p = p.adjust(lm_p, method = "BH"))
stats$labels_pre <- c(rep("non-DE; high-var", 30),
rep("non-DE; low-var", 30),
rep("DE-up; low-var", 10),
rep("DE-up; high-var", 10),
rep("DE-down; low-var", 10),
rep("DE-down; high-var", 10))
stats$labels <- rep("non-DE", nrow(stats))
stats$labels[stats$adj.P.Val < 0.05 & stats$lm_p < 0.05] <- "DE"
stats$labels[stats$adj.P.Val < 0.05 & stats$lm_p >= 0.05] <- "limma-only"
stats$labels[stats$adj.P.Val >= 0.05 & stats$lm_p < 0.05] <- "lm-only"
table(stats$labels)
DE limma-only lm-only non-DE
22 7 3 68
table(stats$labels, stats$labels_pre)
DE-down; high-var DE-down; low-var DE-up; high-var
DE 0 7 3
limma-only 1 3 1
lm-only 0 0 0
non-DE 9 0 6
DE-up; low-var non-DE; high-var non-DE; low-var
DE 9 0 3
limma-only 1 1 0
lm-only 0 0 3
non-DE 0 29 24
stopifnot(stats$logFC == stats$lm_beta)
de <- data.frame(effect_size = stats$lm_beta,
std_dev = stats$sd,
lm = stats$lm_p < 0.05,
limma = stats$adj.P.Val < 0.05)
head(de)
effect_size std_dev lm limma
1 -2.4577980 3.750555 FALSE FALSE
2 2.7130980 3.353835 FALSE FALSE
3 -0.2048963 1.715542 FALSE FALSE
4 0.2934781 3.511502 FALSE FALSE
5 2.3383110 1.955378 FALSE FALSE
6 3.9361382 3.326517 FALSE FALSE
# View the number of discrepancies
table(de$lm, de$limma)
FALSE TRUE
FALSE 68 7
TRUE 3 22
# Plot effect size (y-axis) vs. standard deviation (x-axis)
ggplot(de, aes(x = std_dev, y = effect_size, color = limma)) +
geom_point()
Version | Author | Date |
---|---|---|
4976490 | John Blischak | 2018-08-20 |
ggplot(stats, aes(x = sd, y = logFC, color = labels)) +
geom_point()
Version | Author | Date |
---|---|---|
4976490 | John Blischak | 2018-08-20 |
ggplot(stats, aes(x = logFC, y = -log10(P.Value), color = labels)) +
geom_point()
Version | Author | Date |
---|---|---|
4976490 | John Blischak | 2018-08-20 |
Visualize example genes with boxplots. Note that the limma-only gene has higher variance compared to the lm-only gene.
# Find a good example of a DE gene
index <- which(stats$labels_pre == "DE-up; low-var" & stats$labels == "DE")[1]
single_gene <- gexp %>% as.data.frame %>%
slice(index) %>%
gather(key = "group", value = "gene") %>%
mutate(group = str_extract(group, "[a-z]*")) %>%
as.data.frame()
# Find a gene that is DE for both, DE for lm-only, and DE for limma-only
de_not <- de_lm <- which(stats$labels == "non-DE" &
stats$labels_pre == "non-DE; high-var" &
stats$logFC > 0)[1]
de_both <- which(stats$labels == "DE" &
stats$labels_pre == "DE-up; low-var")[1]
de_lm <- which(stats$labels == "lm-only" &
stats$labels_pre == "non-DE; low-var" &
stats$logFC > 0)[1]
de_limma <- which(stats$labels == "limma-only" &
stats$labels_pre == "DE-up; high-var")[1]
compare <- gexp %>%
as.data.frame() %>%
slice(c(de_not, de_both, de_lm, de_limma)) %>%
mutate(type = c("neither", "both", "lm-only", "limma-only")) %>%
gather(key = "group", value = "gene", con1:treat3) %>%
mutate(group = str_extract(group, "[a-z]*")) %>%
as.data.frame()
head(compare)
type group gene
1 neither con 6.681872
2 both con 8.555641
3 lm-only con 9.959914
4 limma-only con 11.391149
5 neither con 8.144218
6 both con 7.977472
# Plot gene expression (gene; y-axis) vs. group (x-axis)
ggplot(compare, aes(x = group, y = gene)) +
geom_boxplot() +
facet_wrap(~type, nrow = 1)
Version | Author | Date |
---|---|---|
4976490 | John Blischak | 2018-08-20 |
sessionInfo()
R version 3.5.0 (2018-04-23)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 17134)
Matrix products: default
locale:
[1] LC_COLLATE=English_United States.1252
[2] LC_CTYPE=English_United States.1252
[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C
[5] LC_TIME=English_United States.1252
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] bindrcpp_0.2.2 limma_3.36.1 tidyr_0.8.1 stringr_1.3.1
[5] knitr_1.20 dplyr_0.7.5 cowplot_0.9.2 ggplot2_2.2.1
loaded via a namespace (and not attached):
[1] Rcpp_0.12.17 compiler_3.5.0 pillar_1.2.3
[4] git2r_0.21.0 plyr_1.8.4 workflowr_1.1.1
[7] bindr_0.1.1 R.methodsS3_1.7.1 R.utils_2.6.0
[10] tools_3.5.0 digest_0.6.15 evaluate_0.10.1
[13] tibble_1.4.2 gtable_0.2.0 pkgconfig_2.0.1
[16] rlang_0.2.1 yaml_2.1.19 rprojroot_1.3-2
[19] grid_3.5.0 tidyselect_0.2.4 glue_1.2.0
[22] R6_2.2.2 rmarkdown_1.10 purrr_0.2.5
[25] magrittr_1.5 whisker_0.3-2 backports_1.1.2
[28] scales_0.5.0 htmltools_0.3.6 assertthat_0.2.0
[31] colorspace_1.3-2 labeling_0.3 stringi_1.2.3
[34] lazyeval_0.2.1 munsell_0.5.0 R.oo_1.22.0
This reproducible R Markdown analysis was created with workflowr 1.1.1