Last updated: 2019-02-12
workflowr checks: (Click a bullet for more information) ✔ R Markdown file: up-to-date
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
✔ Environment: empty
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
✔ Seed:
set.seed(12345)
The command set.seed(12345)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
✔ Session information: recorded
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
✔ Repository version: 391ed92
wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: code/method-npreg.Rmd/slurm-46123907.out
Ignored: code/method-npreg.Rmd/slurm-46123908.out
Ignored: code/method-npreg.Rmd/slurm-46123909.out
Ignored: code/method-npreg.Rmd/slurm-46123910.out
Ignored: code/method-npreg.Rmd/slurm-46123911.out
Ignored: code/method-npreg.Rmd/slurm-46123912.out
Ignored: code/method-npreg.Rmd/slurm-46123913.out
Ignored: code/method-npreg.Rmd/slurm-46123914.out
Ignored: code/method-npreg.Rmd/slurm-46123915.out
Ignored: code/method-npreg.Rmd/slurm-46123916.out
Ignored: code/npreg-methods.Rmd/slurm-45076734.out
Ignored: code/npreg/slurm-45320823.out
Ignored: code/trendfilter-individual.Rmd/slurm-49893750.out
Ignored: code/trendfilter-individual.Rmd/slurm-49893751.out
Ignored: code/trendfilter-individual.Rmd/slurm-49893752.out
Ignored: code/trendfilter-individual.Rmd/slurm-49893753.out
Ignored: code/trendfilter-individual.Rmd/slurm-49893754.out
Ignored: code/trendfilter-individual.Rmd/slurm-49893755.out
Ignored: data/batch-paper/
Ignored: data/confess-rds/
Ignored: data/data-labwebsite/
Ignored: data/results/
Ignored: dsc/data/
Ignored: notes/
Ignored: output/npreg-trendfilter.Rmd/
Ignored: output_tmp/
Untracked files:
Untracked: analysis/cellcycler-seqdata-fucci.Rmd
Untracked: analysis/method-eval-bottcher.Rmd
Untracked: analysis/method-eval-buettner.Rmd
Untracked: analysis/method-eval-leng.Rmd
Untracked: analysis/norm-ercc-batch.Rmd
Untracked: analysis/norm-ercc-fucci.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 0201c1e | Joyce Hsiao | 2019-02-12 | add lab page data link |
Rmd | 435d656 | Chiaowen Joyce Hsiao | 2019-02-12 | Merge branch ‘master’ into master |
html | 435d656 | Chiaowen Joyce Hsiao | 2019-02-12 | Merge branch ‘master’ into master |
Rmd | 9c05421 | Chiaowen Joyce Hsiao | 2019-02-12 | Merge pull request #57 from jdblischak/download |
html | 85b83c0 | Joyce Hsiao | 2019-01-31 | Build site. |
Rmd | 453d90b | Joyce Hsiao | 2019-01-31 | minor edits |
Rmd | 2fd7c02 | Joyce Hsiao | 2019-01-31 | minor edits |
html | e87325c | Joyce Hsiao | 2018-04-11 | Build site. |
Rmd | 816dccd | Joyce Hsiao | 2018-04-11 | tidy up data processing overview |
html | 19db0c4 | Joyce Hsiao | 2018-04-10 | Build site. |
Rmd | 77d10d4 | Joyce Hsiao | 2018-04-10 | save final dataset to data/eset-final.rds: add estimated cell time to |
html | 28cf63f | Joyce Hsiao | 2018-04-09 | Build site. |
Rmd | a1584da | Joyce Hsiao | 2018-01-31 | edits |
Rmd | 78d5a2c | Joyce Hsiao | 2018-01-16 | data description |
html | b5c6d55 | Joyce Hsiao | 2017-12-23 | Build site. |
html | 820a38a | Joyce Hsiao | 2017-12-13 | Build site. |
Rmd | 7509725 | Joyce Hsiao | 2017-12-13 | wflow_publish(“analysis/data-overview.Rmd”) |
This document lists the datasets analyzed in the study.
We stored all datasets as expressionSets
(require Biobase
package).
We provided data in TXT format on the Gilad lab website for the 11,093 genes analyzed in the study and for each of the 888 samples: molecule count, sample phenotpyes, gene information, phenotype label descriptiond and FUCCI intensity data.
We collected two types of data for each single cell sample: single-cell RNA-seq using C1 plates and FUCCI image intensity data.
Raw RNA-seq data: data/eset-raw.rds
Filtered RNA-seq data: data/eset-filtered.rds
FUCCI intensity data: data/intensity.rds
FUCCI intensity data adjusted for batch effect: output/images-normalize-anova.Rmd/pdata.adj.rds
Final data combining filtered intensity and RNA-seq, including 11093 genes and 888 samples: data/eset-final.rds
Code used to generate data from data/eset-raw.rds
to data/eset-final.rds
is stored in code/output-raw-2-final.R
.
You have two main options for downloading the data files. First, you can manually download the individual files by clicking on the links on this page or navigating to the files in the fucci-seq GitHub repository. This is the recommended strategy if you only need a few data files.
Second, you can install git-lfs. To handle large files, we used Git Large File Storage (LFS). This means that the files that you download with git clone
are only plain text files that contain identifiers for the files saved on GitHub’s servers. If you want to download all of the data files at once, you can do this with after you install git-lfs.
To install git-lfs, follow their instructions to download, install, and setup (git lfs install
). Alternatively, if you use conda, you can install git-lfs with conda install -c conda-forge git-lfs
. Once installed, you can download the latest version of the data files with git lfs pull
.
We store feature-level (gene) read count and molecule count in expressionSet
(data/eset
) objects, which also contain sample metadata (e.g., assigned indivdual ID, cDNA concentraion) and quality filtering criteria (e.g., number of reads mapped to FUCCI transgenes, ERCC conversion rate). Data from different C1 plates are stored in separate eset
objects:
To combine eset
objects from the different C1 plates:
eset <- Reduce(combine, Map(readRDS, Sys.glob("data/eset/*.rds")))
To access data stored in expressionSet
:
exprs(eset)
: access count data, 20,421 features by 1,536 single cell samples.
pData(eset)
: access sample metadata. Returns data.frame of 1,536 samples by 43 labels. Use varMetadata(phenoData(eset))
to view label descriptions.
fData(eset)
: access feature metadata. Returns data.frame of 20,421 features by 6 labels. Use varMetadata(featureData(eset))
to view label descriptions.
varMetadata(phenoData(eset))
: view the sample metadata labels.
varMetadata(featureData(eset))
: view the feature (gene) metadata labels.
Combined intensity data are stored in data/intensity.rds
. These include samples that were identified to have a single nuclei .
Data generated by combine-intensity-data.R. Combining image analysis output stored in /project2/gilad/fucci-seq/intensities_stats/
into one data.frame
and computes summary statistics, including background-corrected RFP and GFP intensity measures.
Raw data from each C1 plate are stored separatley in data/eset/
by experiment (batch) ID.
Raw data combining C1 plate are stored in data/eset-raw.rds
.
Filtered raw data excluding low-quality sequencing samples and genes that are lowly expressed or overly expressed are stored in data/eset-filtered.rds
.
output/data-overview.Rmd/phenotypes_allsamples.txt
)output/data-overview.Rmd/phenotypes_singletonsamples.txt
)output/data-overview.Rmd/phenotypes_labels.txt
)library(Biobase)
eset_raw <- readRDS("../data/eset-raw.rds")
df <- data.frame(sample_id=rownames(pData(eset_raw)), pData(eset_raw), stringsAsFactors = F)
write.table(df, quote=F, sep="\t",
row.names = F, col.names = T,
file = "../output/data-overview.Rmd/phenotypes_allsamples.txt")
eset_final <- readRDS("../data/eset-final.rds")
df <- data.frame(sample_id=rownames(pData(eset_final)), pData(eset_final), stringsAsFactors = F)
write.table(df, quote=F, sep="\t",
row.names = F, col.names = T,
file = "../output/data-overview.Rmd/phenotypes_singletonsamples.txt")
labels <- data.frame(var_names=rownames(varMetadata(eset_raw)),
labels=varMetadata(eset_raw)$labeDescription, stringsAsFactors = F)
labels <- rbind(labels,
data.frame(var_names=rownames(varMetadata(eset_final)),
labels=varMetadata(eset_final)$labelDescription, stringsAsFactors = F)[45:54,])
write.table(labels, quote=F,
sep="\t", row.names = F, col.names = T,
file = "../output/data-overview.Rmd/phenotypes_labels.txt")
# testing reading files
library(data.table)
df_all <- fread(file = "../output/data-overview.Rmd/phenotypes_allsamples.txt")
df_singles <- fread(file = "../output/data-overview.Rmd/phenotypes_singletonsamples.txt")
df_labels <- fread(file = "../output/data-overview.Rmd/phenotypes_labels.txt")
eset_final <- readRDS("../data/eset-final.rds")
df <- data.frame(sample_id=rownames(pData(eset_raw)), pData(eset_raw), stringsAsFactors = F)
write.table(df, quote=F, sep="\t", quote=F,
row.names = F, col.names = T,
file = "../output/data-overview.Rmd/phenotypes_allsamples.txt")
write.table(data.frame(var_names=rownames(varMetadata(eset_raw)),
labels=varMetadata(eset_raw)$labeDescription, stringsAsFactors = F),
quote=F,
sep="\t", row.names = F, col.names = T,
file = "../output/data-overview.Rmd/phenotypes_allsamples_labels.txt")
# testing reading files
library(data.table)
df_test <- fread(file = "../output/data-overview.Rmd/phenotypes_allsamples.txt")
df_labels_test <- fread(file = "../output/data-overview.Rmd/phenotypes_allsamples_labels.txt")
sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)
Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
loaded via a namespace (and not attached):
[1] workflowr_1.1.1 Rcpp_1.0.0 digest_0.6.18
[4] rprojroot_1.3-2 R.methodsS3_1.7.1 backports_1.1.2
[7] magrittr_1.5 git2r_0.23.0 evaluate_0.12
[10] stringi_1.2.4 whisker_0.3-2 R.oo_1.22.0
[13] R.utils_2.7.0 rmarkdown_1.10 tools_3.5.1
[16] stringr_1.3.1 yaml_2.2.0 compiler_3.5.1
[19] htmltools_0.3.6 knitr_1.20
This reproducible R Markdown analysis was created with workflowr 1.1.1