This document lists the datasets analyzed in the study.
We stored all datasets as expressionSets
(require Biobase
package).
We provided data in TXT format on the Gilad lab website for the 11,093 genes analyzed in the study and for each of the 888 samples: molecule count, sample phenotpyes, gene information, phenotype label descriptiond and FUCCI intensity data.
We collected two types of data for each single cell sample: single-cell RNA-seq using C1 plates and FUCCI image intensity data.
Raw RNA-seq data: data/eset-raw.rds
Filtered RNA-seq data: data/eset-filtered.rds
FUCCI intensity data: data/intensity.rds
FUCCI intensity data adjusted for batch effect: output/images-normalize-anova.Rmd/pdata.adj.rds
Final data combining filtered intensity and RNA-seq, including 11093 genes and 888 samples: data/eset-final.rds
Code used to generate data from data/eset-raw.rds
to data/eset-final.rds
is stored in code/output-raw-2-final.R
.
Combined intensity data are stored in data/intensity.rds
. These include samples that were identified to have a single nuclei .
Data generated by combine-intensity-data.R. Combining image analysis output stored in /project2/gilad/fucci-seq/intensities_stats/
into one data.frame
and computes summary statistics, including background-corrected RFP and GFP intensity measures.
Raw data from each C1 plate are stored separatley in data/eset/
by experiment (batch) ID.
Raw data combining C1 plate are stored in data/eset-raw.rds
.
Filtered raw data excluding low-quality sequencing samples and genes that are lowly expressed or overly expressed are stored in data/eset-filtered.rds
.
output/data-overview.Rmd/phenotypes_allsamples.txt
)output/data-overview.Rmd/phenotypes_singletonsamples.txt
)output/data-overview.Rmd/phenotypes_labels.txt
)library(Biobase)
eset_raw <- readRDS("../data/eset-raw.rds")
df <- data.frame(sample_id=rownames(pData(eset_raw)), pData(eset_raw), stringsAsFactors = F)
write.table(df, quote=F, sep="\t",
row.names = F, col.names = T,
file = "../output/data-overview.Rmd/phenotypes_allsamples.txt")
eset_final <- readRDS("../data/eset-final.rds")
df <- data.frame(sample_id=rownames(pData(eset_final)), pData(eset_final), stringsAsFactors = F)
write.table(df, quote=F, sep="\t",
row.names = F, col.names = T,
file = "../output/data-overview.Rmd/phenotypes_singletonsamples.txt")
labels <- data.frame(var_names=rownames(varMetadata(eset_raw)),
labels=varMetadata(eset_raw)$labeDescription, stringsAsFactors = F)
labels <- rbind(labels,
data.frame(var_names=rownames(varMetadata(eset_final)),
labels=varMetadata(eset_final)$labelDescription, stringsAsFactors = F)[45:54,])
write.table(labels, quote=F,
sep="\t", row.names = F, col.names = T,
file = "../output/data-overview.Rmd/phenotypes_labels.txt")
# testing reading files
library(data.table)
df_all <- fread(file = "../output/data-overview.Rmd/phenotypes_allsamples.txt")
df_singles <- fread(file = "../output/data-overview.Rmd/phenotypes_singletonsamples.txt")
df_labels <- fread(file = "../output/data-overview.Rmd/phenotypes_labels.txt")
eset_final <- readRDS("../data/eset-final.rds")
df <- data.frame(sample_id=rownames(pData(eset_raw)), pData(eset_raw), stringsAsFactors = F)
write.table(df, quote=F, sep="\t", quote=F,
row.names = F, col.names = T,
file = "../output/data-overview.Rmd/phenotypes_allsamples.txt")
write.table(data.frame(var_names=rownames(varMetadata(eset_raw)),
labels=varMetadata(eset_raw)$labeDescription, stringsAsFactors = F),
quote=F,
sep="\t", row.names = F, col.names = T,
file = "../output/data-overview.Rmd/phenotypes_allsamples_labels.txt")
# testing reading files
library(data.table)
df_test <- fread(file = "../output/data-overview.Rmd/phenotypes_allsamples.txt")
df_labels_test <- fread(file = "../output/data-overview.Rmd/phenotypes_allsamples_labels.txt")
We store feature-level (gene) read count and molecule count in expressionSet
(data/eset
) objects, which also contain sample metadata (e.g., assigned indivdual ID, cDNA concentraion) and quality filtering criteria (e.g., number of reads mapped to FUCCI transgenes, ERCC conversion rate). Data from different C1 plates are stored in separate eset
objects:
To combine eset
objects from the different C1 plates:
eset <- Reduce(combine, Map(readRDS, Sys.glob("data/eset/*.rds")))
To access data stored in expressionSet
:
exprs(eset)
: access count data, 20,421 features by 1,536 single cell samples.
pData(eset)
: access sample metadata. Returns data.frame of 1,536 samples by 43 labels. Use varMetadata(phenoData(eset))
to view label descriptions.
fData(eset)
: access feature metadata. Returns data.frame of 20,421 features by 6 labels. Use varMetadata(featureData(eset))
to view label descriptions.
varMetadata(phenoData(eset))
: view the sample metadata labels.
varMetadata(featureData(eset))
: view the feature (gene) metadata labels.
This R Markdown site was created with workflowr