Last updated: 2018-07-04
Code version: 2498ce4
results_eval_top101 <- readRDS("../data/results/results_eval_top101.rds")
results_eval_top10 <- readRDS("../data/results/results_eval_top10.rds")
source("../peco/R/utility.R")
source("../peco/R/fit.trendfilter.generic.R")
source("../peco/R/run_seurat.R")
mean(results_eval_top10$fit.supervised$diff_time)/2/pi
[1] 0.1024371
mean(results_eval_top10$fit.trend2.unsup$diff_time)/2/pi
[1] 0.1027337
mean(results_eval_top10$fit.seurat$diff_time)/2/pi
[1] 0.1450893
pve.wrapper <- function(results_list, methods_list) {
res <- lapply(1:length(results_list),
function(i) {
obj <- results_list[[i]]
out <- data.frame(
dapi=with(obj, get.pve(dapi[order(pred_time_shift)])$pve),
gfp=with(obj, get.pve(gfp[order(pred_time_shift)])$pve),
rfp=with(obj, get.pve(rfp[order(pred_time_shift)])$pve) )
})
names(res) <- methods_list
return(res)
}
results_list <- results_eval_top10
methods_list <- sapply(names(results_list), function(x) strsplit(x, split=".", fixed=TRUE)[[1]][2])
pve_eval_top10 <- do.call(rbind, pve.wrapper(results_list=results_eval_top10,
methods_list=methods_list))
Fold 1 ... Fold 2 ... Fold 3 ... Fold 4 ... Fold 5 ...
Fold 1 ... Fold 2 ... Fold 3 ... Fold 4 ... Fold 5 ...
Fold 1 ... Fold 2 ... Fold 3 ... Fold 4 ... Fold 5 ...
Fold 1 ... Fold 2 ... Fold 3 ... Fold 4 ... Fold 5 ...
Fold 1 ... Fold 2 ... Fold 3 ... Fold 4 ... Fold 5 ...
Fold 1 ... Fold 2 ... Fold 3 ... Fold 4 ... Fold 5 ...
Fold 1 ... Fold 2 ... Fold 3 ... Fold 4 ... Fold 5 ...
Fold 1 ... Fold 2 ... Fold 3 ... Fold 4 ... Fold 5 ...
Fold 1 ... Fold 2 ... Fold 3 ... Fold 4 ... Fold 5 ...
Fold 1 ... Fold 2 ... Fold 3 ... Fold 4 ... Fold 5 ...
Fold 1 ... Fold 2 ... Fold 3 ... Fold 4 ... Fold 5 ...
Fold 1 ... Fold 2 ... Fold 3 ... Fold 4 ... Fold 5 ...
Fold 1 ... Fold 2 ... Fold 3 ... Fold 4 ... Fold 5 ...
Fold 1 ... Fold 2 ... Fold 3 ... Fold 4 ... Fold 5 ...
Fold 1 ... Fold 2 ... Fold 3 ... Fold 4 ... Fold 5 ...
pve_eval_top10$genes_used <- "top10"
pve_eval_top10$methods <- methods_list
saveRDS(pve_eval_top10,
"../output/method-eval-withheld-explore.Rmd/pve_eval_top10.rds")
pve_eval_top10 <- readRDS("../output/method-eval-withheld-explore.Rmd/pve_eval_top10.rds")
print(pve_eval_top10)
dapi gfp rfp genes_used methods
supervised 0.125585308 0.0148850520 0.3092444 top10 supervised
trend2 0.113966791 0.0884220119 0.2200606 top10 trend2
bspline 0.101424270 0.1342596991 0.2563613 top10 bspline
loess 0.133801337 0.1079941543 0.2980371 top10 loess
seurat 0.007779095 0.0005450732 0.1126729 top10 seurat
get.aov(yy=results_eval_top10$fit.seurat$dapi,
xx=results_eval_top10$fit.seurat$assignments)
$pve
[1] 0.06984216
$pval
[1] 0.01161179
get.aov(yy=results_eval_top10$fit.seurat$gfp,
xx=results_eval_top10$fit.seurat$assignments)
$pve
[1] 0.0538643
$pval
[1] 0.03134803
get.aov(yy=results_eval_top10$fit.seurat$rfp,
xx=results_eval_top10$fit.seurat$assignments)
$pve
[1] 0.1285371
$pval
[1] 0.0003419435
seurat.S.sup <- with(results_eval_top10,
get.pve(fit.seurat$S[order(fit.supervised$pred_time_shift)]))
seurat.S.unsup <- with(results_eval_top10,
get.pve(fit.seurat$S[order(fit.trend2.unsup$pred_time_shift)]))
seurat.G2M.sup <- with(results_eval_top10,
get.pve(fit.seurat$G2M[order(fit.supervised$pred_time_shift)]))
seurat.G2M.unsup <- with(results_eval_top10,
get.pve(fit.seurat$G2M[order(fit.trend2.unsup$pred_time_shift)]))
seurat.S.owntime <- with(results_eval_top10,
get.pve(fit.seurat$S[order(fit.seurat$cell_times_est)]))
seurat.G2M.owntime <- with(results_eval_top10,
get.pve(fit.seurat$G2M[order(fit.seurat$cell_times_est)]))
save(seurat.S.sup, seurat.S.unsup,
seurat.G2M.sup, seurat.G2M.unsup,
seurat.S.owntime, seurat.G2M.owntime,
file = "../output/method-eval-withheld-explore.Rmd/seurat.time.top10.rda")
load(file="../output/method-eval-withheld-explore.Rmd/seurat.time.top10.rda")
c(seurat.S.sup$pve, seurat.G2M.sup$pve)
[1] 0.3896577 0.5287918
c(seurat.S.unsup$pve, seurat.G2M.unsup$pve)
[1] 0.2623815 0.5239003
c(seurat.S.owntime$pve, seurat.G2M.owntime$pve)
[1] 0.8272036 0.8565118
with(results_eval_top10,
get.aov(yy=fit.seurat$G2M,xx=fit.seurat$assignments))
$pve
[1] 0.6777578
$pval
[1] 1.471869e-15
with(results_eval_top10,
get.aov(yy=fit.seurat$S,xx=fit.seurat$assignments))
$pve
[1] 0.5747001
$pval
[1] 9.6592e-14
cols <- c("orange", "red", "brown")
par(mfrow=c(1,3))
with(results_eval_top10,
hist(fit.trend2.unsup$pred_time_shift[fit.seurat$assignments=="G1"],
nclass=5, col=cols[1], main = "G1, 10 cells", xlim=c(0,2*pi), ylim=c(0,30),
xlab="Predicted cell time"))
with(results_eval_top10, hist(fit.trend2.unsup$pred_time_shift[fit.seurat$assignments=="S"],
nclass=10, col=cols[2],
main = "S, 66 cells", xlim=c(0,2*pi), ylim=c(0,30),
xlab="Predicted cell time"))
with(results_eval_top10, hist(fit.trend2.unsup$pred_time_shift[fit.seurat$assignments=="G2M"],
nclass=10, col=cols[3],
main = "G2M, 57 cells", xlim=c(0,2*pi), ylim=c(0,30),
xlab="Predicted cell time"))
title("Unsupervised cell time and Seurat classes", outer=TRUE, line=-1)
cols <- c("orange", "red", "brown")
par(mfrow=c(1,3))
with(results_eval_top10,
hist(fit.supervised$pred_time_shift[fit.seurat$assignments=="G1"],
nclass=5, col=cols[1], main = "G1, 10 cells", xlim=c(0,2*pi), ylim=c(0,30),
xlab="Predicted cell time"))
with(results_eval_top10, hist(fit.supervised$pred_time_shift[fit.seurat$assignments=="S"],
nclass=10, col=cols[2],
main = "S, 66 cells", xlim=c(0,2*pi), ylim=c(0,30),
xlab="Predicted cell time"))
with(results_eval_top10, hist(fit.supervised$pred_time_shift[fit.seurat$assignments=="G2M"],
nclass=10, col=cols[3],
main = "G2M, 57 cells", xlim=c(0,2*pi), ylim=c(0,30),
xlab="Predicted cell time"))
title("Supervised cell time and Seurat classes", outer=TRUE, line=-1)
source("../peco/R/utility.R")
source("../peco/R/fit.trendfilter.generic.R")
source("../peco/R/run_seurat.R")
mean(results_eval_top101$fit.supervised$diff_time)/2/pi
[1] 0.09062966
mean(results_eval_top101$fit.trend2.unsup$diff_time)/2/pi
[1] 0.1160692
mean(results_eval_top101$fit.seurat$diff_time)/2/pi
[1] 0.1450893
pve.wrapper <- function(results_list, methods_list) {
res <- lapply(1:length(results_list),
function(i) {
obj <- results_list[[i]]
out <- data.frame(
dapi=with(obj, get.pve(dapi[order(pred_time_shift)])$pve),
gfp=with(obj, get.pve(gfp[order(pred_time_shift)])$pve),
rfp=with(obj, get.pve(rfp[order(pred_time_shift)])$pve) )
})
names(res) <- methods_list
return(res)
}
results_list <- results_eval_top101
methods_list <- sapply(names(results_list), function(x) strsplit(x, split=".", fixed=TRUE)[[1]][2])
pve_eval_top101 <- do.call(rbind, pve.wrapper(results_list=results_eval_top101,
methods_list=methods_list))
Fold 1 ... Fold 2 ... Fold 3 ... Fold 4 ... Fold 5 ...
Fold 1 ... Fold 2 ... Fold 3 ... Fold 4 ... Fold 5 ...
Fold 1 ... Fold 2 ... Fold 3 ... Fold 4 ... Fold 5 ...
Fold 1 ... Fold 2 ... Fold 3 ... Fold 4 ... Fold 5 ...
Fold 1 ... Fold 2 ... Fold 3 ... Fold 4 ... Fold 5 ...
Fold 1 ... Fold 2 ... Fold 3 ... Fold 4 ... Fold 5 ...
Fold 1 ... Fold 2 ... Fold 3 ... Fold 4 ... Fold 5 ...
Fold 1 ... Fold 2 ... Fold 3 ... Fold 4 ... Fold 5 ...
Fold 1 ... Fold 2 ... Fold 3 ... Fold 4 ... Fold 5 ...
Fold 1 ... Fold 2 ... Fold 3 ... Fold 4 ... Fold 5 ...
Fold 1 ... Fold 2 ... Fold 3 ... Fold 4 ... Fold 5 ...
Fold 1 ... Fold 2 ... Fold 3 ... Fold 4 ... Fold 5 ...
Fold 1 ... Fold 2 ... Fold 3 ... Fold 4 ... Fold 5 ...
Fold 1 ... Fold 2 ... Fold 3 ... Fold 4 ... Fold 5 ...
Fold 1 ... Fold 2 ... Fold 3 ... Fold 4 ... Fold 5 ...
pve_eval_top101$genes_used <- "top101"
pve_eval_top101$methods <- methods_list
saveRDS(pve_eval_top101,
"../output/method-eval-withheld-explore.Rmd/pve_eval_top101.rds")
pve_eval_top101 <- readRDS("../output/method-eval-withheld-explore.Rmd/pve_eval_top101.rds")
print(pve_eval_top101)
dapi gfp rfp genes_used methods
supervised 0.099929197 0.1208146060 0.2861203 top101 supervised
trend2 0.147145939 0.0948834158 0.1423536 top101 trend2
bspline 0.183418205 0.0020355877 0.3354409 top101 bspline
loess 0.004744912 0.0649387956 0.1642361 top101 loess
seurat 0.007779095 0.0005450732 0.1126729 top101 seurat
get.aov(yy=results_eval_top101$fit.seurat$dapi,
xx=results_eval_top101$fit.seurat$assignments)
$pve
[1] 0.06984216
$pval
[1] 0.01161179
get.aov(yy=results_eval_top101$fit.seurat$gfp,
xx=results_eval_top101$fit.seurat$assignments)
$pve
[1] 0.0538643
$pval
[1] 0.03134803
get.aov(yy=results_eval_top101$fit.seurat$rfp,
xx=results_eval_top101$fit.seurat$assignments)
$pve
[1] 0.1285371
$pval
[1] 0.0003419435
seurat.S.sup <- with(results_eval_top101,
get.pve(fit.seurat$S[order(fit.supervised$pred_time_shift)]))
seurat.S.unsup <- with(results_eval_top101,
get.pve(fit.seurat$S[order(fit.trend2.unsup$pred_time_shift)]))
seurat.G2M.sup <- with(results_eval_top101,
get.pve(fit.seurat$G2M[order(fit.supervised$pred_time_shift)]))
seurat.G2M.unsup <- with(results_eval_top101,
get.pve(fit.seurat$G2M[order(fit.trend2.unsup$pred_time_shift)]))
seurat.S.owntime <- with(results_eval_top101,
get.pve(fit.seurat$S[order(fit.seurat$cell_times_est)]))
seurat.G2M.owntime <- with(results_eval_top101,
get.pve(fit.seurat$G2M[order(fit.seurat$cell_times_est)]))
save(seurat.S.sup, seurat.S.unsup,
seurat.G2M.sup, seurat.G2M.unsup,
seurat.S.owntime, seurat.G2M.owntime,
file = "../output/method-eval-withheld-explore.Rmd/seurat.time.top101.rda")
load(file="../output/method-eval-withheld-explore.Rmd/seurat.time.top101.rda")
c(seurat.S.sup$pve, seurat.G2M.sup$pve)
[1] 0.4832478 0.6548333
c(seurat.S.unsup$pve, seurat.G2M.unsup$pve)
[1] 0.5051351 0.5050090
c(seurat.S.owntime$pve, seurat.G2M.owntime$pve)
[1] 0.8272036 0.8565118
with(results_eval_top101,
get.aov(yy=fit.seurat$G2M,xx=fit.seurat$assignments))
$pve
[1] 0.6777578
$pval
[1] 1.471869e-15
with(results_eval_top101,
get.aov(yy=fit.seurat$S,xx=fit.seurat$assignments))
$pve
[1] 0.5747001
$pval
[1] 9.6592e-14
cols <- c("orange", "red", "brown")
par(mfrow=c(1,3))
with(results_eval_top101,
hist(fit.trend2.unsup$pred_time_shift[fit.seurat$assignments=="G1"],
nclass=5, col=cols[1], main = "G1, 10 cells", xlim=c(0,2*pi), ylim=c(0,30),
xlab="Predicted cell time"))
with(results_eval_top101, hist(fit.trend2.unsup$pred_time_shift[fit.seurat$assignments=="S"],
nclass=10, col=cols[2],
main = "S, 66 cells", xlim=c(0,2*pi), ylim=c(0,30),
xlab="Predicted cell time"))
with(results_eval_top101, hist(fit.trend2.unsup$pred_time_shift[fit.seurat$assignments=="G2M"],
nclass=10, col=cols[3],
main = "G2M, 57 cells", xlim=c(0,2*pi), ylim=c(0,30),
xlab="Predicted cell time"))
title("Unsupervised cell time and Seurat classes", outer=TRUE, line=-1)
cols <- c("orange", "red", "brown")
par(mfrow=c(1,3))
with(results_eval_top101,
hist(fit.supervised$pred_time_shift[fit.seurat$assignments=="G1"],
nclass=5, col=cols[1], main = "G1, 10 cells", xlim=c(0,2*pi), ylim=c(0,30),
xlab="Predicted cell time"))
with(results_eval_top101, hist(fit.supervised$pred_time_shift[fit.seurat$assignments=="S"],
nclass=10, col=cols[2],
main = "S, 66 cells", xlim=c(0,2*pi), ylim=c(0,30),
xlab="Predicted cell time"))
with(results_eval_top101, hist(fit.supervised$pred_time_shift[fit.seurat$assignments=="G2M"],
nclass=10, col=cols[3],
main = "G2M, 57 cells", xlim=c(0,2*pi), ylim=c(0,30),
xlab="Predicted cell time"))
title("Supervised cell time and Seurat classes", outer=TRUE, line=-1)
sessionInfo()
R version 3.4.3 (2017-11-30)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)
Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] genlasso_1.3 igraph_1.2.1 Matrix_1.2-14 MASS_7.3-50
loaded via a namespace (and not attached):
[1] Rcpp_0.12.17 lattice_0.20-35 digest_0.6.15 rprojroot_1.3-2
[5] grid_3.4.3 backports_1.1.2 git2r_0.21.0 magrittr_1.5
[9] evaluate_0.10.1 stringi_1.2.3 rmarkdown_1.10 tools_3.4.3
[13] stringr_1.3.1 yaml_2.1.19 compiler_3.4.3 pkgconfig_2.0.1
[17] htmltools_0.3.6 knitr_1.20
This R Markdown site was created with workflowr