Last updated: 2020-06-23
Checks: 6 1
Knit directory: PSYMETAB/
This reproducible R Markdown analysis was created with workflowr (version 1.6.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish
to commit the R Markdown file and build the HTML.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20191126)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: ._docs
Ignored: .drake/
Ignored: analysis/.Rhistory
Ignored: analysis/._GWAS.Rmd
Ignored: analysis/._data_processing_in_genomestudio.Rmd
Ignored: analysis/._quality_control.Rmd
Ignored: analysis/GWAS/
Ignored: analysis/PRS/
Ignored: analysis/QC/
Ignored: analysis/site_libs/
Ignored: analysis_prep_1_clustermq.out
Ignored: analysis_prep_2_clustermq.out
Ignored: analysis_prep_3_clustermq.out
Ignored: analysis_prep_4_clustermq.out
Ignored: data/processed/
Ignored: data/raw/
Ignored: download_impute_1_clustermq.out
Ignored: init_analysis_1_clustermq.out
Ignored: init_analysis_2_clustermq.out
Ignored: init_analysis_3_clustermq.out
Ignored: init_analysis_4_clustermq.out
Ignored: init_analysis_5_clustermq.out
Ignored: init_analysis_6_clustermq.out
Ignored: packrat/lib-R/
Ignored: packrat/lib-ext/
Ignored: packrat/lib/
Ignored: post_impute_1_clustermq.out
Ignored: pre_impute_qc_1_clustermq.out
Ignored: process_init_10_clustermq.out
Ignored: process_init_11_clustermq.out
Ignored: process_init_12_clustermq.out
Ignored: process_init_13_clustermq.out
Ignored: process_init_14_clustermq.out
Ignored: process_init_15_clustermq.out
Ignored: process_init_16_clustermq.out
Ignored: process_init_17_clustermq.out
Ignored: process_init_18_clustermq.out
Ignored: process_init_19_clustermq.out
Ignored: process_init_1_clustermq.out
Ignored: process_init_20_clustermq.out
Ignored: process_init_21_clustermq.out
Ignored: process_init_22_clustermq.out
Ignored: process_init_23_clustermq.out
Ignored: process_init_24_clustermq.out
Ignored: process_init_25_clustermq.out
Ignored: process_init_26_clustermq.out
Ignored: process_init_27_clustermq.out
Ignored: process_init_28_clustermq.out
Ignored: process_init_29_clustermq.out
Ignored: process_init_2_clustermq.out
Ignored: process_init_30_clustermq.out
Ignored: process_init_31_clustermq.out
Ignored: process_init_3_clustermq.out
Ignored: process_init_4_clustermq.out
Ignored: process_init_5_clustermq.out
Ignored: process_init_6_clustermq.out
Ignored: process_init_7_clustermq.out
Ignored: process_init_8_clustermq.out
Ignored: process_init_9_clustermq.out
Ignored: prs_1_clustermq.out
Ignored: prs_2_clustermq.out
Ignored: prs_3_clustermq.out
Ignored: prs_4_clustermq.out
Untracked files:
Untracked: analysis/genetic_quality_control.Rmd
Untracked: analysis/plans.Rmd
Untracked: analysis_prep.log
Untracked: download_impute.log
Untracked: grs.log
Untracked: init_analysis.log
Untracked: process_init.log
Untracked: prs.log
Unstaged changes:
Modified: analysis/GWAS.Rmd
Modified: analysis/data_sources.Rmd
Modified: analysis/index.Rmd
Modified: analysis/pheno_quality_control.Rmd
Deleted: analysis/project.Rmd
Modified: analysis/quality_control.Rmd
Modified: cache_log.csv
Modified: post_impute.log
Modified: slurm_clustermq.tmpl
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view them.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | a56ae32 | Sjaarda Jennifer Lynn | 2020-01-22 | add GWAS functions |
html | 46477dd | Jenny Sjaarda | 2019-12-06 | Build site. |
Rmd | 16f6c28 | Sjaarda Jennifer Lynn | 2019-12-06 | add gwas Rmd |
The following document outlines and summarizes the GWAS analyses run in PSYMETAB.
found that GYYEHMDR is listed as both Male and Female -> should be female only.
After discussion with others, it was decided to define drugs into three classes
AP1 pour faible risque de prise de poids: Amisulpride, Aripiprazole, Brexpiprazole, Cariprazine, Carbamazepine, Chlorprothixene, Flupentixol, Fluphenazine, Haloperidol, Lurasidone, Pipampérone, Promazine, Sertindole, Sulpiride, Tiapride
AP2 pour risque intermédiaire de prise de poids: Amitriptyline, Asenapine, Clomipramine, Dibenzepine, Doxepine, Imipramine, Lévomépromazine, Lithium, Mirtazapine, Nortriptyline, Opipramol, Palipéridone, Quétiapine, Rispéridone, Trimipramine, Zuclopenthixol
AP3 pour risque élevé de prise de poids: Clozapine, Olanzapine, Valproate
Specifically, high, medium and low inducers were defined as follows:
high_inducers
[1] "Olanzapine" "Clozapine" "Valproate"
med_inducers
[1] "Amitriptyline" "Asenapine" "Clomipramine" "Doxepine"
[5] "Levomepromazine" "Lithium" "Mirtazapine" "Paliperidone"
[9] "Risperidone" "Quetiapine" "Trimipramine" "Zuclopenthixol"
low_inducers
[1] "Amisulpride" "Aripiprazole" "Brexpiprazole" "Cariprazine"
[5] "Carbamazepine" "Chlorprothixene" "Flupentixol" "Fluphenazine"
[9] "Haloperidol" "Lurasidone" "Pipamperone" "Sertindole"
[13] "Sulpiride" "Tiapride"
Plus or minus on follow-up to double check that the “Mois” column make sense.
leeway_time <- 90 For example, if one visit is marked month 3 on September 5/15; and the previous visit marked month 0 on June 15/19, the script below will check if: the difference between the two dates (September 5/15 - June 15/19) is within the difference between the two months (3 = 90 days) +/- the ‘leeway_time’
min_follow_up <- 14
Three types of GWAS were run
het_out <-
fread(
paste0("analysis/GWAS/subgroup/", eth, "/", output, "_", suffix,
"_", eth, ".", outcome_var, ".het"),
header = F,
data.table = F
)
sig_list <- which(as.numeric(het_out[, 2]) < 5e-08)
length(sig_list)
colnames(het_out) <- c("ID", "P_HET")
result <- cbind(filter, "P_HET" = het_out$P_HET)
png(
paste0("analysis/GWAS/subgroup/", eth, "/", output, "_", suffix, "_", eth, ".", outcome_var, ".het.manhattan.png"),
width = 2000,
height = 1000,
pointsize = 18
)
manhattan(result, p = "P_HET", chr = "CHROM")
dev.off()
png(
paste0(
"analysis/GWAS/subgroup/", eth, "/", output, "_", suffix, "_", eth, ".", outcome_var, ".het.qq.png"),
width = 2000,
height = 1000,
pointsize = 18
)
qq(result$P_HET)
dev.off()
#### GWAS
sig_nodrug <-nodrug[ which(nodrug$P < 5e-08),]
sig_drug <- drug[which(drug$P < 5e-08),]
for(data in c("nodrug", "drug"))
{
gwas_result <- get(data)
joint <- reduce(list(gwas_result,freq,info), full_join, by = "ID")
sig <- joint %>%
mutate_at("P", as.numeric) %>%
filter(P < 5e-06) %>%
filter(ALT_FREQS > maf_threshold & ALT_FREQS < (1 - maf_threshold)) %>%
filter(R2 > info_threshold)
joint_maf <- joint %>% filter(ALT_FREQS > maf_threshold & ALT_FREQS < (1- maf_threshold))%>% mutate_at("P", as.numeric)
sig <- joint_maf %>% filter(P < gw_sig)
png("man_interaction.png", width=2000, height=1000, pointsize=18)
manhattan(joint_maf)
dev.off()
png("interaction_qq2.png", width=2000, height=1000, pointsize=18)
qq(joint_maf$P)
dev.off()
qq(gwas_result2$P)
# sig_nodrug <- sig
}
gwas_result <- fread(result, data.table=F, stringsAsFactors=F)
gwas_result2 <- gwas_result %>% rename(CHR = "#CHROM") %>% rename(BP = POS) %>% filter(!is.na(P))
#### GWAS
sig_nodrug <-nodrug[ which(nodrug$P < 5e-08),]
sig_drug <- drug[which(drug$P < 5e-08),]
for(data in c("nodrug", "drug"))
{
gwas_result <- get(data)
gwas_munge <- gwas_result %>% rename(CHR = "#CHROM") %>% rename(BP = POS) %>% filter(!is.na(P))
joint <- reduce(list(gwas_munge,freq,info), full_join, by = "ID")
sig <- joint %>%
mutate_at("P", as.numeric) %>%
filter(P < 5e-06) %>%
filter(ALT_FREQS > maf_threshold & ALT_FREQS < (1 - maf_threshold)) %>%
filter(R2 > info_threshold)
# sig_nodrug <- sig
}
loadd(pheno_raw)
# temp <- pheno_raw %>%
# mutate(Date = as.Date(Date, format = '%d.%m.%Y')) %>% filter(!is.na(Date)) %>% arrange(Date) %>%
# mutate(AP1 = gsub(" ", "_",AP1)) %>% mutate_at("AP1",as.factor) %>% mutate(AP1 = gsub("_.*$","", AP1)) %>% mutate(AP1 = na_if(AP1, "")) %>%## merge retard/depot with original
# group_by(GEN) %>% mutate(sex = check_sex(Sexe))
# temp %>% filter(is.na(sex)) %>% dplyr::select(sex, Sexe) %>% filter(!is.na(Sexe))
#
# GEN sex Sexe
# <chr> <chr> <chr>
# 1 GYYEHMDR NA M
# 2 GYYEHMDR NA M
# 3 GYYEHMDR NA M
# 4 GYYEHMDR NA F
# 5 GYYEHMDR NA F
sessionInfo()
R version 3.5.3 (2019-03-11)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: CentOS Linux 7 (Core)
Matrix products: default
BLAS: /data/sgg2/jenny/bin/R-3.5.3/lib64/R/lib/libRblas.so
LAPACK: /data/sgg2/jenny/bin/R-3.5.3/lib64/R/lib/libRlapack.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] tidylog_1.0.1 OpenImageR_1.1.6 fuzzyjoin_0.1.5
[4] kableExtra_1.1.0 R.utils_2.9.2 R.oo_1.23.0
[7] R.methodsS3_1.7.1 TwoSampleMR_0.4.25 reader_1.0.6
[10] NCmisc_1.1.6 optparse_1.6.4 readxl_1.3.1
[13] ggthemes_4.2.0 tryCatchLog_1.1.6 futile.logger_1.4.3
[16] DataExplorer_0.8.0 taRifx_1.0.6.1 qqman_0.1.4
[19] MASS_7.3-51.5 bit64_0.9-7 bit_1.1-14
[22] rslurm_0.5.0 rmeta_3.0 devtools_2.2.1
[25] usethis_1.5.1 data.table_1.12.8 clustermq_0.8.8.1
[28] future.batchtools_0.8.1 future_1.15.1 rlang_0.4.5
[31] knitr_1.26 drake_7.12.0.9000 forcats_0.4.0
[34] stringr_1.4.0 dplyr_0.8.3 purrr_0.3.3
[37] readr_1.3.1 tidyr_1.0.3 tibble_2.1.3
[40] ggplot2_3.2.1 tidyverse_1.3.0 pacman_0.5.1
[43] processx_3.4.1 workflowr_1.6.0
loaded via a namespace (and not attached):
[1] backports_1.1.6 plyr_1.8.5 igraph_1.2.5
[4] lazyeval_0.2.2 storr_1.2.1 listenv_0.8.0
[7] digest_0.6.25 htmltools_0.4.0 tiff_0.1-5
[10] fansi_0.4.1 magrittr_1.5 checkmate_1.9.4
[13] memoise_1.1.0 base64url_1.4 remotes_2.1.0
[16] globals_0.12.5 modelr_0.1.5 prettyunits_1.1.0
[19] jpeg_0.1-8.1 colorspace_1.4-1 rvest_0.3.5
[22] rappdirs_0.3.1 haven_2.2.0 xfun_0.11
[25] callr_3.4.0 crayon_1.3.4 jsonlite_1.6
[28] brew_1.0-6 glue_1.4.0 gtable_0.3.0
[31] webshot_0.5.2 pkgbuild_1.0.6 scales_1.1.0
[34] futile.options_1.0.1 DBI_1.1.0 Rcpp_1.0.3
[37] xtable_1.8-4 viridisLite_0.3.0 progress_1.2.2
[40] txtq_0.2.0 clisymbols_1.2.0 htmlwidgets_1.5.1
[43] httr_1.4.1 getopt_1.20.3 calibrate_1.7.5
[46] ellipsis_0.3.0 pkgconfig_2.0.3 dbplyr_1.4.2
[49] tidyselect_0.2.5 reshape2_1.4.3 later_1.0.0
[52] munsell_0.5.0 cellranger_1.1.0 tools_3.5.3
[55] cli_2.0.1 generics_0.0.2 broom_0.5.3
[58] fastmap_1.0.1 evaluate_0.14 yaml_2.2.0
[61] fs_1.3.1 packrat_0.5.0 nlme_3.1-143
[64] mime_0.8 whisker_0.4 formatR_1.7
[67] proftools_0.99-2 xml2_1.2.2 compiler_3.5.3
[70] rstudioapi_0.10 png_0.1-7 filelock_1.0.2
[73] testthat_2.3.1 reprex_0.3.0 stringi_1.4.5
[76] ps_1.3.0 desc_1.2.0 lattice_0.20-38
[79] vctrs_0.2.4 pillar_1.4.3 lifecycle_0.1.0
[82] networkD3_0.4 httpuv_1.5.2 R6_2.4.1
[85] promises_1.1.0 gridExtra_2.3 sessioninfo_1.1.1
[88] codetools_0.2-16 lambda.r_1.2.4 assertthat_0.2.1
[91] pkgload_1.0.2 rprojroot_1.3-2 withr_2.1.2
[94] batchtools_0.9.12 parallel_3.5.3 hms_0.5.3
[97] grid_3.5.3 rmarkdown_1.18 git2r_0.26.1
[100] shiny_1.4.0 lubridate_1.7.4