5 CONTENT
5.1 Comparison to GLODAP
source("/net/kryo/work/uptools/co2_calculation/CONTENT/CO2CONTENT.R")
GLODAP_Cont <- GLODAP %>%
mutate(lon = if_else(lon > 180, lon - 360, lon)) %>%
arrange(year) %>%
select(row_number, year, date, lat, lon, depth, basin_AIP,
temp, sal, oxygen,
talk, tco2) %>%
filter(year == 2015)
# filter rows with essential variables for Canyon-B
GLODAP_Cont <- GLODAP_Cont %>%
filter(across(c(lat, lon, depth,
temp, sal, oxygen), ~ !is.na(.x)))
GLODAP_Cont <- GLODAP_Cont %>%
mutate(as_tibble(
CO2CONTENT(
date = paste0(as.character(date), " 12:00"),
lat = lat,
lon = lon,
pres = depth,
temp = temp,
psal = sal,
doxy = oxygen,
param = c("AT", "CT")
)
))
GLODAP_Cont <- GLODAP_Cont %>%
select(-ends_with(c("_ci", "_cim", "_cin", "_cii")))
GLODAP_Cont <- GLODAP_Cont %>%
rename(
"talk_CANYONB" = "AT",
"tco2_CANYONB" = "CT"
)
variables <- c("talk", "tco2")
for (i_variable in variables) {
# i_variable <- variables[1]
# calculate equal axis limits and binwidth
axis_lims <- GLODAP_Cont %>%
drop_na() %>%
summarise(max_value = max(c(max(
!!sym(i_variable)
),
max(!!sym(
paste0(i_variable, "_CANYONB")
)))),
min_value = min(c(min(
!!sym(i_variable)
),
min(!!sym(
paste0(i_variable, "_CANYONB")
)))))
binwidth_value <- (axis_lims$max_value - axis_lims$min_value) / 60
axis_lims <- c(axis_lims$min_value, axis_lims$max_value)
print(
ggplot(GLODAP_Cont, aes(
x = !!sym(i_variable),
y = !!sym(paste0(i_variable, "_CANYONB"))
)) +
geom_bin2d(binwidth = binwidth_value) +
scale_fill_viridis_c(trans = "log10") +
geom_abline(slope = 1, col = 'red') +
coord_equal(xlim = axis_lims,
ylim = axis_lims) +
facet_wrap( ~ basin_AIP) +
labs(title = "All years")
)
for (i_year in unique(GLODAP_Cont$year)) {
# i_year <- 2017
print(
ggplot(
GLODAP_Cont %>% filter(year == i_year),
aes(x = !!sym(i_variable),
y = !!sym(paste0(
i_variable, "_CANYONB"
)))
) +
geom_bin2d(binwidth = binwidth_value) +
scale_fill_viridis_c(trans = "log10") +
geom_abline(slope = 1, col = 'red') +
coord_equal(xlim = axis_lims,
ylim = axis_lims) +
facet_wrap( ~ basin_AIP) +
labs(title = paste("Year:", i_year))
)
}
}
5.2 Write Canyon-B file
GLODAP_Cont %>%
select(row_number,
talk_CANYONB, tco2_CANYONB) %>%
write_csv(paste(path_preprocessing,
"GLODAPv2.2021_Canyon-B.csv",
sep = ""))
sessionInfo()
R version 4.0.3 (2020-10-10)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.2
Matrix products: default
BLAS: /usr/local/R-4.0.3/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.0.3/lib64/R/lib/libRlapack.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] mgcv_1.8-33 nlme_3.1-149 lubridate_1.7.9 metR_0.9.0
[5] scico_1.2.0 patchwork_1.1.1 collapse_1.5.0 forcats_0.5.0
[9] stringr_1.4.0 dplyr_1.0.5 purrr_0.3.4 readr_1.4.0
[13] tidyr_1.1.2 tibble_3.0.4 ggplot2_3.3.3 tidyverse_1.3.0
[17] workflowr_1.6.2
loaded via a namespace (and not attached):
[1] httr_1.4.2 splines_4.0.3 jsonlite_1.7.1
[4] viridisLite_0.3.0 modelr_0.1.8 assertthat_0.2.1
[7] blob_1.2.1 cellranger_1.1.0 yaml_2.2.1
[10] pillar_1.4.7 backports_1.1.10 lattice_0.20-41
[13] glue_1.4.2 RcppEigen_0.3.3.7.0 digest_0.6.27
[16] promises_1.1.1 checkmate_2.0.0 rvest_0.3.6
[19] colorspace_1.4-1 htmltools_0.5.0 httpuv_1.5.4
[22] Matrix_1.2-18 pkgconfig_2.0.3 broom_0.7.5
[25] haven_2.3.1 scales_1.1.1 whisker_0.4
[28] later_1.1.0.1 git2r_0.27.1 generics_0.0.2
[31] farver_2.0.3 ellipsis_0.3.1 withr_2.3.0
[34] cli_2.1.0 magrittr_1.5 crayon_1.3.4
[37] readxl_1.3.1 evaluate_0.14 fs_1.5.0
[40] fansi_0.4.1 xml2_1.3.2 RcppArmadillo_0.10.1.2.0
[43] tools_4.0.3 data.table_1.13.2 hms_0.5.3
[46] lifecycle_1.0.0 munsell_0.5.0 reprex_0.3.0
[49] compiler_4.0.3 rlang_0.4.10 grid_4.0.3
[52] rstudioapi_0.11 labeling_0.4.2 rmarkdown_2.5
[55] gtable_0.3.0 DBI_1.1.0 R6_2.5.0
[58] knitr_1.30 rprojroot_2.0.2 stringi_1.5.3
[61] parallel_4.0.3 Rcpp_1.0.5 vctrs_0.3.5
[64] dbplyr_1.4.4 tidyselect_1.1.0 xfun_0.18









































































































































































































































