Last updated: 2020-08-21
Checks: 7 0
Knit directory: jesslyn_ovca/analysis/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20200713) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 8bfebbe. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: analysis/.DS_Store
Ignored: code/.DS_Store
Ignored: data/.DS_Store
Ignored: data/HTAPP/
Ignored: data/Izar_2020/
Ignored: data/gene_lists/.DS_Store
Ignored: data/gene_lists/extra/.DS_Store
Ignored: jesslyn_plots/
Ignored: mike_plots/
Ignored: old/.DS_Store
Ignored: old/edited/.DS_Store
Ignored: renv/.DS_Store
Ignored: renv/library/
Ignored: renv/python/
Ignored: renv/staging/
Ignored: vignettes/
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/02.0_Izar2020_SS2_ExploratoryAnalysis.Rmd) and HTML (docs/02.0_Izar2020_SS2_ExploratoryAnalysis.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.
| File | Version | Author | Date | Message |
|---|---|---|---|---|
| Rmd | 8bfebbe | jgoh2 | 2020-08-21 | SS2 PCA matrix |
| html | 2c1accf | jgoh2 | 2020-08-19 | Build site. |
| Rmd | 729ebf4 | jgoh2 | 2020-08-19 | workflowr::wflow_publish(files = files) |
| html | 92568b8 | jgoh2 | 2020-08-17 | Build site. |
| Rmd | d60aeff | jgoh2 | 2020-08-17 | More DE Analysis of other hallmarks |
| html | 80345fe | jgoh2 | 2020-08-15 | Build site. |
| html | 789982d | jgoh2 | 2020-08-14 | Build site. |
| html | e05c328 | jgoh2 | 2020-08-12 | Build site. |
| html | 84edf85 | jgoh2 | 2020-08-12 | Build site. |
| Rmd | d504c59 | jgoh2 | 2020-08-12 | workflowr::wflow_publish(files = files) |
| html | a3ddf54 | jgoh2 | 2020-08-07 | Build site. |
| Rmd | 3e3db67 | jgoh2 | 2020-08-07 | workflowr::wflow_publish(files = files) |
| Rmd | 1263ec1 | jgoh2 | 2020-08-04 | PDX choices GSEA ranking |
| html | d801a7a | jgoh2 | 2020-08-04 | Build site. |
| Rmd | 6d23590 | jgoh2 | 2020-08-04 | workflowr::wflow_publish(files = files) |
| html | 26f64a3 | jgoh2 | 2020-08-03 | Build site. |
| Rmd | eaa900e | jgoh2 | 2020-08-03 | workflowr::wflow_publish(files = files) |
| html | 8b4b72f | jgoh2 | 2020-07-31 | Build site. |
| Rmd | 21a445c | jgoh2 | 2020-07-31 | workflowr::wflow_publish(files = “analysis/02.0_Izar2020_SS2_ExploratoryAnalysis.Rmd”) |
| html | a15430b | jgoh2 | 2020-07-31 | Build site. |
| Rmd | b0c12c7 | jgoh2 | 2020-07-31 | workflowr::wflow_publish(files = “analysis/02.0_Izar2020_SS2_ExploratoryAnalysis.Rmd”) |
| html | 2dc1bee | jgoh2 | 2020-07-31 | Build site. |
| Rmd | 284aad4 | jgoh2 | 2020-07-31 | workflowr::wflow_publish(files = files) |
This is the third part of our 5-part analysis of the Izar 2020 SS2 (Cohort 2) data.
# Load packages
source(here::here('packages.R'))
#Read in SS2 RDS object
SS2Malignant = readRDS(file = "data/Izar_2020/jesslyn_SS2Malignant_processed.RDS")
SS2Malignant8.9 = readRDS(file = "data/Izar_2020/jesslyn_SS2Malignant89_processed.RDS")
SS2Malignant.8 = readRDS(file = "data/Izar_2020/jesslyn_SS2Malignant8_processed.RDS")
SS2Malignant.9 = readRDS(file = "data/Izar_2020/jesslyn_SS2Malignant9_processed.RDS")
#Read in hallmarks of interest
hallmark_names = read_lines("data/gene_lists/hallmarks.txt")
hallmark.list <- vector(mode = "list", length = length(hallmark_names))
names(hallmark.list) <- hallmark_names
for(hm in hallmark_names){
if(file.exists(glue("data/gene_lists/hallmarks/{hm}_updated.txt"))){
file <- read_lines(glue("data/gene_lists/hallmarks/{hm}_updated.txt"), skip = 1)
hallmark.list[[hm]] <- file
}
else{
file <- read_lines(glue("data/gene_lists/extra/{hm}.txt"), skip =2)
hallmark.list[[hm]] <- file
}
}
#center module and cell cycle scores and reassign to the metadata of each Seurat object
hm.names <- names(SS2Malignant@meta.data)[14:61]
for(i in hm.names){
SS2Malignant.hm.centered <- scale(SS2Malignant[[i]], center = TRUE, scale = FALSE)
SS2Malignant <- AddMetaData(SS2Malignant, SS2Malignant.hm.centered, col.name = glue("{i}.centered"))
SS2Malignant8.hm.centered <- scale(SS2Malignant.8[[i]], center = TRUE, scale = FALSE)
SS2Malignant.8 <- AddMetaData(SS2Malignant.8, SS2Malignant8.hm.centered, col.name = glue("{i}.centered"))
SS2Malignant9.hm.centered <- scale(SS2Malignant.9[[i]], center = TRUE, scale = FALSE)
SS2Malignant.9 <- AddMetaData(SS2Malignant.9, SS2Malignant9.hm.centered, col.name = glue("{i}.centered"))
}
#numMalignantCellsPerSample
numMalignantCellsPerSample <- table(SS2Malignant$sample, SS2Malignant$cell.type, SS2Malignant$treatment.status) %>%
as.data.frame() %>%
dplyr::rename(sample = Var1, celltype = Var2, treatment = Var3, numCells = Freq) %>%
filter(`celltype` == "Malignant")
ggplot(numMalignantCellsPerSample, aes(x = sample, y=numCells, fill = treatment)) +
theme_bw() +
geom_bar(stat = "identity") +
labs(title = "Number of Malignant Cells Per Sample in SS2 Data")

numMalignantCellsPerPatientPerTreatment <- table(SS2Malignant$Patient, SS2Malignant$treatment.status) %>%
as.data.frame() %>%
dplyr::rename(Patient = Var1, treatment = Var2, numCells = Freq)
numCells.NA <- numMalignantCellsPerPatientPerTreatment$numCells
numCells.NA[2] <- 252
ggplot(numMalignantCellsPerPatientPerTreatment, aes(x = Patient, y=numCells, fill = treatment)) +
geom_bar(position = "fill", stat = "identity") +
theme_bw() +
labs(title = "SS2 Percent of Malignant Cells Per Patient Per Treatment") +
geom_text(aes(label = paste(numCells.NA, "Cells")), size =4, position = "fill", hjust = 0.5, vjust = 4, color = "white", na.rm = TRUE) +
scale_y_continuous(labels = scales::percent)

numMalignantCellsPerPatientPerSample <- table(SS2Malignant$Patient, SS2Malignant$sample) %>%
as.data.frame() %>%
dplyr::rename(Patient = Var1, sample = Var2, numCells = Freq) %>%
filter(numCells != 0)
ggplot(numMalignantCellsPerPatientPerSample, aes(x = Patient, y=numCells, fill = sample)) +
geom_bar(position = "fill", stat = "identity") +
theme_bw() +
labs(title = "SS2 Percent of Malignant Cells Per Patient Per Sample", x = "Percent of Cells") +
geom_text(aes(label = paste(numCells, "Cells")), size =4, position = "fill", hjust = 0.5, vjust = 1.5, color = "white", na.rm = TRUE) +
scale_fill_manual(values = c("#00AFBB", "#E7B800", "orange", "chocolate1", "chocolate2", "#00AFBB", "#E7B800", "orange", "#00AFBB", "#E7B800", "orange", "#00AFBB", "#00AFBB", "#00AFBB")) +
scale_y_continuous(labels = scales::percent)

#metrics for patient 8 and 9
numMalignantCellsPerSample.8 <- table(SS2Malignant.8$Patient, SS2Malignant.8$sample) %>%
as.data.frame() %>%
dplyr::rename(Patient = Var1, sample = Var2, numCells = Freq)
p8 <- ggplot(numMalignantCellsPerSample.8, aes(x = Patient, y = numCells, fill = sample)) +
geom_bar(position = "fill", stat = "identity") +
theme_bw() +
labs(title = "Percent of Malignant Cells Per Sample in Patient 8") +
geom_text(aes(label = c("Treatment-naïve", "On-treatment Timepoint #1", "On-treatment Timepoint #2")), position = "fill", hjust = 0.5, vjust = 2, color = "white", size = 4) +
geom_text(aes(label = paste(numCells, "cells")), size =4, position = "fill", hjust = 0.5, vjust = 4, color = "white") +
scale_fill_manual(values = c("#00AFBB", "#E7B800", "#FC4E07")) +
scale_y_continuous(labels = scales::percent)
numMalignantCellsPerSample.9 <- table(SS2Malignant.9$Patient, SS2Malignant.9$sample) %>%
as.data.frame() %>%
dplyr::rename(Patient = Var1, sample = Var2, numCells = Freq)
p9 <- ggplot(numMalignantCellsPerSample.9, aes(x = Patient, y = numCells, fill = sample)) +
geom_bar(position = "fill", stat = "identity") +
theme_bw() +
labs(title = "Percent of Malignant Cells Per Sample in Patient 9") +
geom_text(aes(label = c("Treatment-naïve", "On-treatment Timepoint #1", "On-treatment Timepoint #2")), position = "fill", hjust = 0.5, vjust = 2, color = "white", size = 4) +
geom_text(aes(label = paste(numCells, "cells")), size =4, position = "fill", hjust = 0.5, vjust = 4, color = "white") +
scale_fill_manual(values = c("#00AFBB", "#E7B800", "#FC4E07")) +
scale_y_continuous(labels = scales::percent)
p <- p8 + p9
p

The summary metrics of each patient shows us how little cells we have in each sample. We therefore have to keep in mind that the results we get from this small sample of cells may not be representative of the true population.
We are interested in finding out how cells cluster together. This helps us qualitatively understand what may be driving their differential expression (if any). We are specifically interested seeing if cells cluster due to these metadata identities: 1. Intermodel heterogeneity: Do separate by model? 2. Intramodel heterogeneity: a. Do cells separate by treatment status? b. Do cells separate by cell cycle phase? c. Do cells separate due to nFeature and nCount? d. Do cells separate by OXPHOS or UPR hallmark scores?
1) BY SAMPLE
#cluster by patient/ sample?
p1 <- UMAPPlot(SS2Malignant, group.by = "Patient", pt.size= 0.5) +
labs(title = "SS2 Malignant Cells UMAP by Patient", subtitle = paste(nrow(SS2Malignant@meta.data),"Malignant Cells")) +
coord_fixed() +
theme(plot.title = element_text(size = 14))
p2 <- UMAPPlot(SS2Malignant, group.by = "sample", pt.size = 0.5) +
labs(title = "SS2 Malignant Cells UMAP by Sample", subtitle = paste(nrow(SS2Malignant@meta.data),"Malignant Cells")) +
coord_fixed() +
theme(plot.title = element_text(size = 14))
p3 <- UMAPPlot(SS2Malignant, group.by = "treatment.status", pt.size = 0.5) +
labs(title = "SS2 Malignant Cells UMAP by Treatment", subtitle = paste(nrow(SS2Malignant@meta.data),"Malignant Cells")) +
coord_fixed() +
theme(plot.title = element_text(size = 14))
p4 <- UMAPPlot(SS2Malignant, group.by = "Phase", pt.size = 0.5) +
labs(title = "SS2 Malignant Cells UMAP by CC Phase", subtitle = paste(nrow(SS2Malignant@meta.data),"Malignant Cells")) +
coord_fixed() +
scale_color_manual(values = c("#00AFBB", "#E7B800", "#FC4E07")) +
theme(plot.title = element_text(size = 14))
p1 + p3 + p4

#only patient 8 and 9
p5 <- UMAPPlot(SS2Malignant8.9, group.by = "Patient", pt.size= 0.5) +
labs(title = "SS2 Malignant Cells UMAP by Patients 8 and 9", subtitle = paste(nrow(SS2Malignant8.9@meta.data),"Malignant Cells")) +
coord_fixed() +
theme(plot.title = element_text(size = 14))
p6 <- UMAPPlot(SS2Malignant8.9, group.by = "sample", pt.size = 0.5) +
labs(title = "SS2 Malignant Cells UMAP by Sample", subtitle = paste(nrow(SS2Malignant8.9@meta.data),"Malignant Cells")) +
coord_fixed() +
theme(plot.title = element_text(size = 14))
p7 <- UMAPPlot(SS2Malignant8.9, group.by = "treatment.status", pt.size = 0.5) +
labs(title = "SS2 Malignant Cells UMAP by Treatment", subtitle = paste(nrow(SS2Malignant8.9@meta.data),"Malignant Cells")) +
coord_fixed() +
theme(plot.title = element_text(size = 14))
p8 <- UMAPPlot(SS2Malignant8.9, group.by = "Phase", pt.size = 0.5) +
labs(title = "SS2 Malignant Cells UMAP by CC Phase", subtitle = paste(nrow(SS2Malignant8.9@meta.data),"Malignant Cells")) +
coord_fixed() +
scale_color_manual(values = c("#00AFBB", "#E7B800", "#FC4E07")) +
theme(plot.title = element_text(size = 14))
p5 + p7 + p8

| Version | Author | Date |
|---|---|---|
| a3ddf54 | jgoh2 | 2020-08-07 |
2) BY TREATMENT STATUS WITHIN EACH MODEL
#Patient 8 ---------
p4 <- UMAPPlot(SS2Malignant.8, group.by = "treatment.status") +
labs(title = "SS2 UMAP Patient 8 by Treatment", subtitle = paste(nrow(SS2Malignant.8@meta.data),"Malignant Cells")) +
theme(plot.title = element_text(size = 12))
p5 <- UMAPPlot(SS2Malignant.8, group.by = "sample") +
labs(title = "SS2 UMAP Patient 8 by Sample", subtitle = paste(nrow(SS2Malignant.8@meta.data),"Malignant Cells")) +
theme(plot.title = element_text(size = 12)) +
scale_color_manual(values = c("#00AFBB", "#E7B800", "#FC4E07"))
p6 <- PCAPlot(SS2Malignant.8, group.by = "sample") +
labs(title = "SS2 PCA Patient 8 by Sample", subtitle = paste(nrow(SS2Malignant.8@meta.data),"Malignant Cells")) +
theme(plot.title = element_text(size = 12)) +
scale_color_manual(values = c("#00AFBB", "#E7B800", "#FC4E07"))
p4 + p5 + p6 + plot_layout(guides = "collect")

#Patient 9 -----------
p7 <- UMAPPlot(SS2Malignant.9, group.by = "treatment.status") +
labs(title = "SS2 UMAP Patient 9 by Treatment", subtitle = paste(nrow(SS2Malignant.9@meta.data),"Malignant Cells")) +
theme(plot.title = element_text(size = 12))
p8 <- UMAPPlot(SS2Malignant.9, group.by = "sample") +
labs(title = "SS2 UMAP Patient 9 by Sample", subtitle = paste(nrow(SS2Malignant.9@meta.data),"Malignant Cells")) +
theme(plot.title = element_text(size = 12)) +
scale_color_manual(values = c("#00AFBB", "#E7B800", "#FC4E07"))
p9 <- PCAPlot(SS2Malignant.9, group.by = "sample") +
labs(title = "SS2 PCA Patient 9 by Sample", subtitle = paste(nrow(SS2Malignant.9@meta.data),"Malignant Cells")) +
theme(plot.title = element_text(size = 12)) +
scale_color_manual(values = c("#00AFBB", "#E7B800", "#FC4E07"))
p7 + p8 + p9 + plot_layout(guides = "collect")

3) BY UPR AND OXPHOS GENESET SCORE
hms.centered = c("GO.OXPHOS35.centered", "UNUPDATED.UPR38.centered")
#UMAP
SS2.names <- c("SS2 Patient 8", "SS2 Patient 9")
SS2s <- c(SS2Malignant.8, SS2Malignant.9)
UMAP.plots <- vector("list", length(SS2s))
names(UMAP.plots) <- SS2.names
for (i in 1:length(SS2s)){
obj <- SS2s[[i]]
name <- SS2.names[[i]]
numCells = nrow(obj@meta.data)
p <- FeaturePlot(obj, features = hms.centered, combine = FALSE)
p[[1]] <- p[[1]] + labs(title = glue("{name} UMAP by OXPHOS Scores"), subtitle = glue("{numCells} Malignant Cells"), caption = "GO_OXIDATIVE_PHOSPHORYLATION") +
coord_fixed()
p[[2]] <- p[[2]] + labs(title = glue("{name} UMAP by UPR Scores"), subtitle = glue("{numCells} Malignant Cells"), caption = "HALLMARK_UNFOLDED_PROTEIN_RESPONSE") +
coord_fixed()
p2 <- FeaturePlot(obj, features = hms.centered, reduction = "pca", combine = FALSE)
p2[[1]] <- p2[[1]] + labs(title = glue("{name} PCA by OXPHOS Scores"), subtitle = glue("{numCells} Malignant Cells"), caption = "GO_OXIDATIVE_PHOSPHORYLATION") +
coord_fixed()
p2[[2]] <- p2[[2]] + labs(title = glue("{name} PCA by UPR Scores"), subtitle = glue("{numCells} Malignant Cells"), caption = "HALLMARK_UNFOLDED_PROTEIN_RESPONSE") +
coord_fixed()
UMAP.plots[[name]] <- p[[1]] + p[[2]] + p2[[1]] + p2[[2]]
}
UMAP.plots[["SS2 Patient 8"]]

UMAP.plots[["SS2 Patient 9"]]

4) BY CELL CYCLE PHASE AND BY nFEATURE/ nCOUNT
#PCA -------------------- (PCA is known to separate cell by cell cycle really well)
ccPCA.plots <- vector("list", length = 3)
names(ccPCA.plots) <- SS2.names
for(i in 1:length(SS2s)){
obj = SS2s[[i]]
name = SS2.names[[i]]
numCells = nrow(obj@meta.data)
obj$Phase <- factor(obj$Phase, levels = c("G1", "S", "G2M"))
bys <- PCAPlot(obj, group.by = "sample") +
labs(title = glue("{name} PCA by sample"), subtitle = glue("{numCells} Malignant Cells")) +
theme(plot.title = element_text(hjust = 0.5)) + theme(plot.title = element_text(size = 12), plot.subtitle = element_text(size = 10)) +
coord_fixed() +
scale_color_manual(values = c("#00AFBB", "#E7B800", "#FC4E07"))
bycc <- PCAPlot(obj, group.by = "Phase") +
labs(title = glue("{name} PCA by Cell Cycle Phase"), subtitle = glue("{numCells} Malignant Cells")) +
theme(plot.title = element_text(hjust = 0.5)) + theme(plot.title = element_text(size = 12), plot.subtitle = element_text(size = 10)) +
coord_fixed() +
scale_color_manual(values = c("#00AFBB", "#E7B800", "#FC4E07"))
byscore <- FeaturePlot(obj, features = c("S.Score", "G2M.Score.centered"), reduction = "pca",combine = FALSE)
byscore[[1]] <- byscore[[1]] + labs(title = glue("{name} PCA by centered S Score"), subtitle = glue("{numCells} Malignant Cells")) + theme(plot.title = element_text(size = 12), plot.subtitle = element_text(size = 10)) +
coord_fixed()
byscore[[2]] <- byscore[[2]] + labs(title = glue("{name} PCA by centered G2M Score"), subtitle = glue("{numCells} Malignant Cells")) + theme(plot.title = element_text(size = 12), plot.subtitle = element_text(size = 10)) +
coord_fixed()
bynFnC <- FeaturePlot(obj, features = c("nCount_RNA", "nFeature_RNA"), reduction = "pca", combine = FALSE)
bynFnC[[1]] <- bynFnC[[1]] + labs(title = glue("{name} PCA by nCount"), subtitle = glue("{numCells} Malignant Cells")) +
theme(plot.title = element_text(size = 12), plot.subtitle = element_text(size = 10)) +
coord_fixed()
bynFnC[[2]] <- bynFnC[[2]] + labs(title = glue("{name} PCA by nFeature"), subtitle = glue("{numCells} Malignant Cells")) +
theme(plot.title = element_text(size = 12), plot.subtitle = element_text(size = 10)) +
coord_fixed()
ccPCA.plots[[i]] <- bys + bycc + byscore[[1]] + byscore[[2]] + bynFnC[[1]] + bynFnC[[2]]
}
ccPCA.plots[["SS2 Patient 8"]]

ccPCA.plots[["SS2 Patient 9"]]

We will investigate further into the correlation between treatment status, hallmark scores, and cell cycle phase in the next sections.
5) Investigating Correlation between nCount, nFeature and Hallmark Scores Our PCA visualizations above suggest that OXPHOS socres may be faintly captured by PC_1, where cells with higher OXPHOS scores tend to be around the same area on the PC_1 axis. However, our PCA visualization of nFeature and nCount reveal that PC_1 strongly captures nCount and nFeature variation, and the same cells with higher OXPHOS scores seem to also have higher nFeature and nCount.
P8.oxphosVsnCount <- ggplot(SS2Malignant.8@meta.data) +
geom_point(alpha = 0.5, aes(x = nCount_RNA, y = GO.OXPHOS35.centered, colour = sample)) +
theme_bw() +
labs(title = "SS2 Patient 8 Malignant Cells OXPHOS vs. nCount", subtitle = paste(nrow(SS2Malignant.8@meta.data),"Malignant Cells", "(R = 0.25, p = 9.2e-04)")) +
theme(plot.title = element_text(size = 12))
P8.oxphosVsnFeature <- ggplot(SS2Malignant.8@meta.data, aes(x = nFeature_RNA, y = GO.OXPHOS35.centered)) +
geom_point(alpha = 0.5, aes(colour = sample)) +
geom_abline(intercept = -0.5, slope = 1) +
theme_bw() +
labs(title = "SS2 Patient 8 Malignant Cells OXPHOS vs. nFeature", subtitle = paste(nrow(SS2Malignant.8@meta.data),"Malignant Cells", "(R = 0.34, p = 3.9e-06)")) +
theme(plot.title = element_text(size = 12))
P9.oxphosVsnCount <- ggplot(SS2Malignant.9@meta.data, aes(x = nCount_RNA, y = GO.OXPHOS35.centered)) +
geom_point(alpha = 0.5, aes(colour = sample)) +
theme_bw() +
labs(title = "SS2 Patient 9 Malignant Cells OXPHOS vs. nCount", subtitle = paste(nrow(SS2Malignant.9@meta.data),"Malignant Cells", "(R = -0.021, p = 0.76)")) +
theme(plot.title = element_text(size = 12))
P9.oxphosVsnFeature <- ggplot(SS2Malignant.9@meta.data, aes(x = nFeature_RNA, y = GO.OXPHOS35.centered)) +
geom_point(alpha = 0.5, aes(colour = sample)) +
geom_abline(intercept = -0.5, slope = 1) +
theme_bw() +
labs(title = "SS2 Patient 9 Malignant Cells OXPHOS vs. nFeature", subtitle = paste(nrow(SS2Malignant.9@meta.data),"Malignant Cells", "(R = 0.051, p = 0.45)")) +
theme(plot.title = element_text(size = 12))
P8.oxphosVsnCount + P8.oxphosVsnFeature + P9.oxphosVsnCount + P9.oxphosVsnFeature + plot_layout(guides= 'collect')

| Version | Author | Date |
|---|---|---|
| 26f64a3 | jgoh2 | 2020-08-03 |
6) Investigating PC that captures OXPHOS and/or UPR scores
#GO.OXPHOS --------------
P8.PCA.cells <- SS2Malignant.8@reductions$pca@cell.embeddings %>% as.data.frame()
Oxphos.ctg <- rep("NA", length = nrow(SS2Malignant.8@meta.data))
Oxphos.ctg[SS2Malignant.8$GO.OXPHOS35.centered > 0.25] <- "Highly Upregulated"
Oxphos.ctg[SS2Malignant.8$GO.OXPHOS35.centered < 0.25 & SS2Malignant.8$GO.OXPHOS35.centered > 0] <- "Slightly Upregulated"
Oxphos.ctg[SS2Malignant.8$GO.OXPHOS35.centered == 0] <- "Not Expressed"
Oxphos.ctg[SS2Malignant.8$GO.OXPHOS35.centered > -0.25 & SS2Malignant.8$GO.OXPHOS35.centered < 0] <- "Slightly Downregulated"
Oxphos.ctg[SS2Malignant.8$GO.OXPHOS35.centered < -0.25] <- "Highly Downregulated"
p1 <- ggpairs(P8.PCA.cells, columns = c("PC_1", "PC_2", "PC_3", "PC_4", "PC_5"), diag = "blank", lower = list(continuous = wrap("points", size = 1)), mapping = aes(alpha = 0.7, colour = Oxphos.ctg)) +
scale_color_brewer(palette="Purples", guide = "legend") +
labs(title = "Investigating the PC that captures OXPHOS scores variation across cells (PC1-PC5)")
p1

p2 <- ggpairs(P8.PCA.cells, columns = c("PC_6", "PC_7", "PC_8", "PC_9", "PC_10"), diag = "blank", lower = list(continuous = wrap("points", size = 1)), mapping = aes(alpha = 0.7, colour = Oxphos.ctg)) +
scale_color_brewer(palette="Purples", guide = "legend") +
labs(title = "Investigating the PC that captures OXPHOS scores variation across cells (PC6-PC10)")
p2

sessionInfo()
R version 4.0.2 (2020-06-22)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Mojave 10.14.6
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRblas.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices datasets utils methods base
other attached packages:
[1] ggbeeswarm_0.6.0 ggpubr_0.4.0 GGally_2.0.0 gt_0.2.1 reshape2_1.4.4
[6] tidyselect_1.1.0 fgsea_1.14.0 presto_1.0.0 data.table_1.12.8 Rcpp_1.0.5
[11] glue_1.4.1 patchwork_1.0.1 EnhancedVolcano_1.6.0 ggrepel_0.8.2 here_0.1
[16] readxl_1.3.1 forcats_0.5.0 stringr_1.4.0 dplyr_1.0.0 purrr_0.3.4
[21] readr_1.3.1 tidyr_1.1.0 tibble_3.0.3 ggplot2_3.3.2 tidyverse_1.3.0
[26] cowplot_1.0.0 Seurat_3.1.5 BiocManager_1.30.10 renv_0.11.0-4
loaded via a namespace (and not attached):
[1] backports_1.1.8 fastmatch_1.1-0 workflowr_1.6.2 plyr_1.8.6 igraph_1.2.5
[6] lazyeval_0.2.2 splines_4.0.2 BiocParallel_1.22.0 listenv_0.8.0 digest_0.6.25
[11] htmltools_0.5.0 fansi_0.4.1 magrittr_1.5 cluster_2.1.0 ROCR_1.0-11
[16] openxlsx_4.1.5 globals_0.12.5 modelr_0.1.8 colorspace_1.4-1 blob_1.2.1
[21] rvest_0.3.5 haven_2.3.1 xfun_0.15 crayon_1.3.4 jsonlite_1.7.0
[26] survival_3.2-3 zoo_1.8-8 ape_5.4 gtable_0.3.0 leiden_0.3.3
[31] car_3.0-8 future.apply_1.6.0 abind_1.4-5 scales_1.1.1 DBI_1.1.0
[36] rstatix_0.6.0 viridisLite_0.3.0 reticulate_1.16 foreign_0.8-80 rsvd_1.0.3
[41] tsne_0.1-3 htmlwidgets_1.5.1 httr_1.4.1 RColorBrewer_1.1-2 ellipsis_0.3.1
[46] ica_1.0-2 farver_2.0.3 pkgconfig_2.0.3 reshape_0.8.8 uwot_0.1.8
[51] dbplyr_1.4.4 labeling_0.3 rlang_0.4.7 later_1.1.0.1 munsell_0.5.0
[56] cellranger_1.1.0 tools_4.0.2 cli_2.0.2 generics_0.0.2 broom_0.7.0
[61] ggridges_0.5.2 evaluate_0.14 yaml_2.2.1 knitr_1.29 fs_1.4.2
[66] fitdistrplus_1.1-1 zip_2.0.4 RANN_2.6.1 pbapply_1.4-2 future_1.18.0
[71] nlme_3.1-148 whisker_0.4 xml2_1.3.2 compiler_4.0.2 rstudioapi_0.11
[76] beeswarm_0.2.3 plotly_4.9.2.1 curl_4.3 png_0.1-7 ggsignif_0.6.0
[81] reprex_0.3.0 stringi_1.4.6 lattice_0.20-41 Matrix_1.2-18 vctrs_0.3.2
[86] pillar_1.4.6 lifecycle_0.2.0 lmtest_0.9-37 RcppAnnoy_0.0.16 irlba_2.3.3
[91] httpuv_1.5.4 R6_2.4.1 promises_1.1.1 KernSmooth_2.23-17 gridExtra_2.3
[96] rio_0.5.16 vipor_0.4.5 codetools_0.2-16 MASS_7.3-51.6 assertthat_0.2.1
[101] rprojroot_1.3-2 withr_2.2.0 sctransform_0.2.1 parallel_4.0.2 hms_0.5.3
[106] grid_4.0.2 rmarkdown_2.3 carData_3.0-4 Rtsne_0.15 git2r_0.27.1
[111] lubridate_1.7.9