Last updated: 2019-02-24

workflowr checks: (Click a bullet for more information)
  • R Markdown file: uncommitted changes The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

  • Environment: empty

    Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

  • Seed: set.seed(20190211)

    The command set.seed(20190211) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

  • Session information: recorded

    Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

  • Repository version: 2d28bb9

    Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

    Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
    
    Ignored files:
        Ignored:    .Rhistory
        Ignored:    analysis/.Rhistory
        Ignored:    output.tar.gz
        Ignored:    output/flash_backfit/
        Ignored:    output/flash_greedy/
        Ignored:    output/log/
        Ignored:    output/sim/
        Ignored:    output/softImpute/
    
    Unstaged changes:
        Modified:   analysis/hoa_global.Rmd
        Modified:   analysis/hoa_weurasia.Rmd
        Modified:   analysis/index.Rmd
        Modified:   analysis/ooa.Rmd
        Modified:   code/viz.R
    
    
    Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Expand here to see past versions:
    File Version Author Date Message
    Rmd 403bc6b jhmarcus 2019-02-15 added hide code blocks
    html 403bc6b jhmarcus 2019-02-15 added hide code blocks
    Rmd b4749ac jhmarcus 2019-02-15 fixed some typos
    html b4749ac jhmarcus 2019-02-15 fixed some typos
    Rmd 7a2b6c7 jhmarcus 2019-02-15 added backfit
    html 7a2b6c7 jhmarcus 2019-02-15 added backfit
    Rmd f5ef1af jhmarcus 2019-02-15 added workflows for human origins datasets
    html f5ef1af jhmarcus 2019-02-15 added workflows for human origins datasets
    Rmd 4afc77e jhmarcus 2019-02-15 init hoa global analysis

Imports

Lets import some needed packages:

library(ggplot2)
library(tidyr)
library(dplyr)
library(RColorBrewer)
source("../code/viz.R")

Human Origins Global (LD Pruned)

This is the full Human Origins dataset 2068 sampled from around the world. I filtered out rare variants with global minor allele frequency less than 5%, and remove any variants with a missingness level greater than 1%. I then LD pruned the SNPs using standard parameters in plink, resulting in 167178 SNPs.

Greedy

Lets first read the greedy flashier fit

flash_fit = readRDS("../output/flash_greedy/hoa_global_ld/HumanOriginsPublic2068_maf_geno_ldprune.rds")
K = ncol(flash_fit$loadings$normalized.loadings[[1]]) 
n = nrow(flash_fit$loadings$normalized.loadings[[1]])
p = nrow(flash_fit$loadings$normalized.loadings[[2]])
print(K)
[1] 21
print(n)
[1] 2068
print(p)
[1] 167178

Lets now plot the distribution of factors for each drift event

# read factors
delta_df = as.data.frame(flash_fit$loadings$normalized.loadings[[2]])
colnames(delta_df)[1:K] = 1:K 

# gather the data.frame for plotting
delta_gath_df = delta_df %>% 
                gather(K, value) %>%
                filter(K!=1)

# plot the factors
K_ = K
p_fct = ggplot(delta_gath_df, aes(x=value)) + 
        scale_fill_manual(values = getPalette(K_)) +
        geom_histogram() + 
        facet_wrap(~factor(K, levels=2:K_), scales = "free") + 
        labs(fill="K") + 
        scale_x_continuous(breaks = scales::pretty_breaks(n = 3)) +
        scale_y_continuous(breaks = scales::pretty_breaks(n = 3)) + 
        theme_bw()
p_fct

Expand here to see past versions of flash-greedy-ld-viz-factors-1.png:
Version Author Date
f5ef1af jhmarcus 2019-02-15

We can see the later factors tend to get sparser but they still seem to contribute! Here is a plot of the “proportion of variance explained” of each factor:

qplot(2:K, flash_fit$pve[2:K]) + ylab("Proportion of Varaince Explained") + xlab("K") + theme_bw()

print(flash_fit$pve)
 [1] 0.4750002010 0.0221931227 0.0180913971 0.0103143286 0.0025255466
 [6] 0.0015774930 0.0045260494 0.0014121917 0.0012173854 0.0007676335
[11] 0.0006728921 0.0008111508 0.0002212648 0.0003887796 0.0002380212
[16] 0.0002352021 0.0001895606 0.0002282840 0.0002907459 0.0001156450
[21] 0.0001605612

It looks like the PVE drops off at around 11 or so? I setup the flashier run so it estimates a SNP specific precision term. Here is a histogram of fitted variances:

qplot(1/flash_fit$fit$est.tau) + xlab("Estimated Variance") + ylab("Count") + theme_bw()

Lets now look the the fitted means:

qplot(delta_df$`1`) + xlab("Estimated Mean") + ylab("Count") + theme_bw()

The mean seems a bit smaller than I would have expected? These plots looks about reasonable as each of the SNP variances should roughly be interpreted as average heterozygosity \(\approx 2p(1-p)\)? The mean term should roughly be interpreted as the mean allele frequency at the SNP and thus we should see a quadratic relationship with the estimated variance:

p_mv = qplot(delta_df$`1`, 1/flash_fit$fit$est.tau, alpha=.3) + 
       xlab("Estimated Mean") + ylab("Estimated Variance") + 
       scale_alpha(guide = "none") + 
       theme_bw()
p_mv

Lets now take a look at the loadings. First we setup a data.frame that we can work with:

# read the meta data
meta_df = read.table("../data/meta/HumanOriginsPublic2068_maf_geno_ldprune.meta", sep=" ", header=T)

# setup loadings data.frame
l_df = as.data.frame(flash_fit$loadings$normalized.loadings[[1]])
K = ncol(l_df)
l_df$iid = as.vector(meta_df$iid) # individual ids
l_df$clst = meta_df$clst # population labels
pops = unique(l_df$clst) # all unique pop labels

# join with the meta data
l_df = l_df %>% inner_join(meta_df, on="clst")
l_df = l_df %>% arrange(region, clst) # sort by region then by population
l_df$iid = factor(l_df$iid, levels = l_df$iid) # make sure the ids are sorted
colnames(l_df)[1:K] = 1:K

head(l_df)
           1           2            3          4            5          6
1 0.02198997 0.009454832 4.485180e-06 0.02211841 3.303098e-05 0.01764253
2 0.02198997 0.009511229 4.406670e-06 0.02247997 4.952488e-05 0.01608845
3 0.02198997 0.006147078 4.086449e-06 0.02482062 2.726321e-05 0.01692735
4 0.02198997 0.009103984 4.338176e-06 0.02293795 2.797966e-05 0.01742585
5 0.02198997 0.009529573 4.394827e-06 0.02267025 3.845100e-05 0.01450389
6 0.02198997 0.009243629 4.460459e-06 0.02215776 2.795106e-05 0.01760249
            7            8            9           10           11
1 0.004374536 1.089539e-03 2.812993e-05 3.470028e-05 3.866924e-05
2 0.003241962 4.231122e-04 2.932860e-05 3.615817e-05 3.888100e-05
3 0.004951296 9.893482e-05 2.583221e-05 3.555401e-05 3.744459e-05
4 0.004661258 1.784788e-04 2.702595e-05 3.411185e-05 3.742829e-05
5 0.004437185 8.043608e-04 2.643633e-05 3.423255e-05 3.784264e-05
6 0.005064440 8.324509e-05 2.791866e-05 3.363985e-05 3.856931e-05
          12           13           14         15           16
1 0.05017069 8.140998e-05 4.952727e-05 0.08068407 7.771326e-05
2 0.04589132 8.638569e-05 5.161609e-05 0.05897009 7.994484e-05
3 0.05074213 8.358567e-05 5.114096e-05 0.08024062 7.892103e-05
4 0.05519966 7.798145e-05 4.992192e-05 0.09129734 8.299529e-05
5 0.05242051 7.961690e-05 4.865967e-05 0.09571542 8.121683e-05
6 0.05152888 8.057720e-05 5.030271e-05 0.07831456 7.913664e-05
            17           18           19           20           21
1 7.842225e-05 1.019054e-04 2.147227e-04 8.793061e-05 8.502300e-05
2 8.227041e-05 8.412758e-05 1.665734e-04 8.801740e-05 1.154576e-04
3 9.672675e-05 8.794415e-05 1.557965e-04 8.469595e-05 2.321882e-04
4 8.006631e-05 1.754711e-04 9.898022e-05 8.627449e-05 3.734673e-04
5 7.616521e-05 8.802899e-05 1.127468e-04 8.540387e-05 6.950001e-03
6 8.043370e-05 8.734172e-05 2.415143e-04 8.651963e-05 8.910156e-05
            iid     clst region country  lat lon    clst2
1 Algerian43A22 Algerian Africa Algeria 36.8   3 Algerian
2 Algerian43A21 Algerian Africa Algeria 36.8   3 Algerian
3 Algerian43A34 Algerian Africa Algeria 36.8   3 Algerian
4 Algerian43A13 Algerian Africa Algeria 36.8   3 Algerian
5 Algerian43A24 Algerian Africa Algeria 36.8   3 Algerian
6 Algerian43A32 Algerian Africa Algeria 36.8   3 Algerian

Its hard to find a color scale that can sufficiently visualize all of the loadings in a single plot. Instead I just split the loadings up into two plots (K=2,…,11) and (K=12,…,21). Lets first visualize loadings 2 through 12:

# gather the data.frame for plotting
l_gath_df = l_df %>% 
            gather(K, value, -iid, -clst, -region, -country, -lat, -lon, -clst2) %>% 
            filter(K %in% paste0(2:11))

# Africa
africa_pops = get_pops(meta_df, "Africa")
p_africa = positive_structure_plot(l_gath_df %>% filter(region == "Africa"), 
                                   africa_pops, colset="Set3", label_size=5) +
           ggtitle("Africa") + theme(plot.title = element_text(size=6))

# America
america_pops = get_pops(meta_df, "America")
p_america = positive_structure_plot(l_gath_df %>% filter(region == "America"), 
                                    america_pops, colset="Set3", label_size=5) + 
            ggtitle("America") + theme(plot.title = element_text(size=6))

# Central Asia Siberia
central_asia_siberia_pops = get_pops(meta_df, "CentralAsiaSiberia")
p_central_asia_siberia = positive_structure_plot(l_gath_df %>% filter(region == "CentralAsiaSiberia"), 
                                                 central_asia_siberia_pops, colset="Set3", label_size=5) + 
                         ggtitle("CentralAsiaSiberia") + theme(plot.title = element_text(size=6))

# East Asia
east_asia_pops = get_pops(meta_df, "EastAsia")
p_east_asia = positive_structure_plot(l_gath_df %>% filter(region == "EastAsia"), 
                                      east_asia_pops, colset="Set3", label_size=5) + 
              ggtitle("EastAsia") + theme(plot.title = element_text(size=6))

# South Asia
south_asia_pops = get_pops(meta_df, "SouthAsia")
p_south_asia= positive_structure_plot(l_gath_df %>% filter(region == "SouthAsia"),
                                      south_asia_pops, colset="Set3", label_size=5) + 
              ggtitle("SouthAsia") + theme(plot.title = element_text(size=6))

# West Eurasia
west_eurasia_pops = get_pops(meta_df, "WestEurasia")
p_west_eurasia = positive_structure_plot(l_gath_df %>% filter(region == "WestEurasia"), 
                                         west_eurasia_pops, colset="Set3", label_size=5) + 
                 ggtitle("WestEurasia") + theme(plot.title = element_text(size=6))

# Oceania
oceania_pops = get_pops(meta_df, "Oceania")
p_oceania = positive_structure_plot(l_gath_df %>% filter(region == "Oceania"), 
                                    oceania_pops, colset="Set3", label_size=5) + 
            ggtitle("Oceania") + theme(plot.title = element_text(size=6))

# Global
p = cowplot::plot_grid(p_africa, p_west_eurasia, p_central_asia_siberia, p_america, p_east_asia, p_south_asia, p_oceania, 
                       rel_heights = c(1.2, 1.3, 1, 1, 1, 1, 1.1),
                       nrow = 7, align = "v") 
p

Lets now visualize loadings 12 to 21 (be careful: there is no connection to the colors in the last plot):

# gather the data.frame for plotting
l_gath_df = l_df %>% 
            gather(K, value, -iid, -clst, -region, -country, -lat, -lon, -clst2) %>% 
            filter(K %in% paste0(12:21))

# Africa
africa_pops = get_pops(meta_df, "Africa")
p_africa = positive_structure_plot(l_gath_df %>% filter(region == "Africa"), 
                                   africa_pops, colset="Set3", label_size=5) +
           ggtitle("Africa") + theme(plot.title = element_text(size=6))

# America
america_pops = get_pops(meta_df, "America")
p_america = positive_structure_plot(l_gath_df %>% filter(region == "America"), 
                                    america_pops, colset="Set3", label_size=5) + 
            ggtitle("America") + theme(plot.title = element_text(size=6))

# Central Asia Siberia
central_asia_siberia_pops = get_pops(meta_df, "CentralAsiaSiberia")
p_central_asia_siberia = positive_structure_plot(l_gath_df %>% filter(region == "CentralAsiaSiberia"), 
                                                 central_asia_siberia_pops, colset="Set3", label_size=5) + 
                         ggtitle("CentralAsiaSiberia") + theme(plot.title = element_text(size=6))

# East Asia
east_asia_pops = get_pops(meta_df, "EastAsia")
p_east_asia = positive_structure_plot(l_gath_df %>% filter(region == "EastAsia"), 
                                      east_asia_pops, colset="Set3", label_size=5) + 
              ggtitle("EastAsia") + theme(plot.title = element_text(size=6))

# South Asia
south_asia_pops = get_pops(meta_df, "SouthAsia")
p_south_asia= positive_structure_plot(l_gath_df %>% filter(region == "SouthAsia"),
                                      south_asia_pops, colset="Set3", label_size=5) + 
              ggtitle("SouthAsia") + theme(plot.title = element_text(size=6))

# West Eurasia
west_eurasia_pops = get_pops(meta_df, "WestEurasia")
p_west_eurasia = positive_structure_plot(l_gath_df %>% filter(region == "WestEurasia"), 
                                         west_eurasia_pops, colset="Set3", label_size=5) + 
                 ggtitle("WestEurasia") + theme(plot.title = element_text(size=6))

# Oceania
oceania_pops = get_pops(meta_df, "Oceania")
p_oceania = positive_structure_plot(l_gath_df %>% filter(region == "Oceania"), 
                                    oceania_pops, colset="Set3", label_size=5) + 
            ggtitle("Oceania") + theme(plot.title = element_text(size=6))

# Global
p = cowplot::plot_grid(p_africa, p_west_eurasia, p_central_asia_siberia, p_america, p_east_asia, p_south_asia, p_oceania, 
                       rel_heights = c(1.2, 1.3, 1, 1, 1, 1, 1.1),
                       nrow = 7, align = "v") 
p

Its kinda interesting to see that some populations have zero loading on later factors. This would be difficult to visualize see if using a single plot for all the factors.

ADMIXTURE

Lets visualize ADMIXTURE with 9 factors which should roughly align to the first plot i.e. FLASH with 2,…,11 (be careful: there is no connection to the colors in the last plot):

l_df = read.table("../output/admixture/hoa_global_ld/HumanOriginsPublic2068_maf_geno_ldprune.K9r1.Q", sep=" ", header=F)
K = ncol(l_df)

l_df$iid = as.vector(meta_df$iid) # individual ids
l_df$clst = meta_df$clst # population labels

# join with the meta data
l_df = l_df %>% inner_join(meta_df, on="clst")
l_df = l_df %>% arrange(region, clst) # sort by region then by population
l_df$iid = factor(l_df$iid, levels = l_df$iid) # make sure the ids are sorted
colnames(l_df)[1:K] = 1:K

# gather the data.frame for plotting
l_gath_df = l_df %>% 
            gather(K, value, -iid, -clst, -region, -country, -lat, -lon, -clst2)

# Africa
africa_pops = get_pops(meta_df, "Africa")
p_africa = positive_structure_plot(l_gath_df %>% filter(region == "Africa"), 
                                   africa_pops, colset="Set3", label_size=5) +
           ggtitle("Africa") + theme(plot.title = element_text(size=6))

# America
america_pops = get_pops(meta_df, "America")
p_america = positive_structure_plot(l_gath_df %>% filter(region == "America"), 
                                    america_pops, colset="Set3", label_size=5) + 
            ggtitle("America") + theme(plot.title = element_text(size=6))

# Central Asia Siberia
central_asia_siberia_pops = get_pops(meta_df, "CentralAsiaSiberia")
p_central_asia_siberia = positive_structure_plot(l_gath_df %>% filter(region == "CentralAsiaSiberia"), 
                                                 central_asia_siberia_pops, colset="Set3", label_size=5) + 
                         ggtitle("CentralAsiaSiberia") + theme(plot.title = element_text(size=6))

# East Asia
east_asia_pops = get_pops(meta_df, "EastAsia")
p_east_asia = positive_structure_plot(l_gath_df %>% filter(region == "EastAsia"), 
                                      east_asia_pops, colset="Set3", label_size=5) + 
              ggtitle("EastAsia") + theme(plot.title = element_text(size=6))

# South Asia
south_asia_pops = get_pops(meta_df, "SouthAsia")
p_south_asia= positive_structure_plot(l_gath_df %>% filter(region == "SouthAsia"),
                                      south_asia_pops, colset="Set3", label_size=5) + 
              ggtitle("SouthAsia") + theme(plot.title = element_text(size=6))

# West Eurasia
west_eurasia_pops = get_pops(meta_df, "WestEurasia")
p_west_eurasia = positive_structure_plot(l_gath_df %>% filter(region == "WestEurasia"), 
                                         west_eurasia_pops, colset="Set3", label_size=5) + 
                 ggtitle("WestEurasia") + theme(plot.title = element_text(size=6))

# Oceania
oceania_pops = get_pops(meta_df, "Oceania")
p_oceania = positive_structure_plot(l_gath_df %>% filter(region == "Oceania"), 
                                    oceania_pops, colset="Set3", label_size=5) + 
            ggtitle("Oceania") + theme(plot.title = element_text(size=6))

# Global
p = cowplot::plot_grid(p_africa, p_west_eurasia, p_central_asia_siberia, p_america, p_east_asia, p_south_asia, p_oceania, 
                       rel_heights = c(1.2, 1.3, 1, 1, 1, 1, 1.1),
                       nrow = 7, align = "v") 
p

There is a lot that one can compare between the ADMIXTURE and FLASH results. A high level observation seems that the ADMIXTURE results look a bit more clustered i.e. the Americas and East Asia look like they are explained mostly by 1 or 2 factors whereas FLASH uses 3-4. Its hard to tell be it seems that this is true in many of the super regions … ADMIXTURE tends use fewer factors to explain population structure in each region, leaing to a more clustered result?

Session information

sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-apple-darwin13.4.0 (64-bit)
Running under: macOS  10.14.2

Matrix products: default
BLAS/LAPACK: /Users/jhmarcus/miniconda3/lib/R/lib/libRblas.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] bindrcpp_0.2.2     RColorBrewer_1.1-2 dplyr_0.7.6       
[4] tidyr_0.8.1        ggplot2_3.0.0     

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.0        compiler_3.5.1    pillar_1.3.0     
 [4] git2r_0.23.0      plyr_1.8.4        workflowr_1.1.1  
 [7] bindr_0.1.1       R.methodsS3_1.7.1 R.utils_2.7.0    
[10] tools_3.5.1       digest_0.6.18     evaluate_0.12    
[13] tibble_1.4.2      gtable_0.2.0      pkgconfig_2.0.1  
[16] rlang_0.3.1       yaml_2.2.0        xfun_0.4         
[19] flashier_0.1.0    withr_2.1.2       stringr_1.3.1    
[22] knitr_1.21        cowplot_0.9.4     rprojroot_1.3-2  
[25] grid_3.5.1        tidyselect_0.2.4  glue_1.3.0       
[28] R6_2.3.0          rmarkdown_1.11    reshape2_1.4.3   
[31] purrr_0.2.5       magrittr_1.5      whisker_0.3-2    
[34] backports_1.1.2   scales_0.5.0      htmltools_0.3.6  
[37] assertthat_0.2.0  colorspace_1.3-2  labeling_0.3     
[40] stringi_1.2.4     lazyeval_0.2.1    munsell_0.5.0    
[43] crayon_1.3.4      R.oo_1.22.0      

This reproducible R Markdown analysis was created with workflowr 1.1.1